
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Programming With Ghosts
Integrated Real-Time Versioning for Creative Coding

Author: Maximilian Mayer (2739590)

1st supervisor: Mauricio Merano Verano
daily supervisor: Mauricio Merano Verano
2nd reader: Fernanda Madeiral

A thesis submitted in fulfilment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

December 11, 2023

Abstract

Context. In recent years, increasingly accessible tools have elevated creative

coding from obscurity to mainstream appeal. However, the exploratory nature

of creative work introduces numerous challenges that have yet to be solved.

Sterman et al. (1) have shown that current version control systems like Git are

insufficient in supporting exploratory software development. This calls for a

new paradigm in the design of such systems.

Goal. This thesis aims to design and test a novel integrated programming

environment, embedding exploratory version control as a key component into

the workflow of creative coders.

Method. Based on current literature, we formulate a framework for exploratory

tool design. Using this framework, we implement a creative coding editor with

embedded version control, and evaluate it in a comparative user study. The

study adopts a hybrid approach, combining quantitative survey questions with

semi-structured interviews.

Results. We are able to demonstrate that small changes to the editing expe-

rience can significantly improve the exploratory process, in particular through

the use of visual version comparison and increased iteration speed. However,

our results indicate limited applicability outside of creative coding, though fur-

ther investigation is needed.

Conclusions. In summary, we contribute a novel framework for exploratory

tool design and a prototypical implementation in the context of version control.

Our testing suggests significant value for creative coding, and prompts further

investigation to generalize these results.

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Creative Exploration . 2

1.2 Version Control for Exploration . 2

1.3 Goal . 3

1.4 Research Questions . 3

1.5 Contributions and Structure . 4

2 Background 5

2.1 Exploratory Programming . 5

2.1.1 The Need for Exploration . 6

2.1.2 The Exploratory Process . 6

2.1.3 Exploratory Tooling . 7

2.2 Creative Coding . 8

2.2.1 Code and Creativity . 8

2.2.2 Tools for Creative Coding . 9

2.3 Version Control Systems . 10

2.3.1 Version Management . 10

2.3.2 Creative Version Control . 11

2.3.3 The Interface Problem . 14

3 Concept 17

3.1 The Confidence Crisis . 17

3.2 Exploring with a Map . 18

3.3 The Ghost Framework . 19

i

CONTENTS

3.3.1 An In-Depth Look: Intuitive Assistive Automation 20

3.3.2 IAA in Practice . 21

3.3.3 Trusting in Ghosts . 23

3.3.4 Building Tools with the Ghost Framework 24

3.3.4.1 Backend Design: Data-Driven Tool Support 24

3.3.4.2 Frontend Design: User Interaction 26

3.3.4.3 Integration of Front- and Backend 29

3.3.5 Limitations . 30

4 Design 33

4.1 The Ghost Editor . 33

4.1.1 Core Concepts . 34

4.1.2 Auxiliary Creative Coding Concepts 39

4.2 Architecture . 42

4.2.1 Backend Architecture . 43

4.2.1.1 Functional Components . 45

4.2.1.2 Data Scheme . 45

4.2.2 Frontend Architecture . 47

4.2.3 Interface Architecture . 50

4.3 Implementation . 50

4.4 Limitations . 51

5 Evaluation 53

5.1 Study Execution . 53

5.2 Participants . 54

5.3 Collected Data . 55

5.4 Evaluation Process . 55

5.4.1 Survey Data . 55

5.4.2 Interviews . 56

5.5 Results . 56

5.5.1 Participant Demographic . 56

5.5.2 Editor Evaluation . 57

5.5.2.1 P5JS Web Editor . 57

5.5.2.2 Ghost Editor . 59

5.5.3 Versioning System Evaluation . 61

5.5.3.1 Layer 1: Code Highlight . 61

ii

CONTENTS

5.5.3.2 Layer 2: Version Interface 62

5.5.3.3 Layer 3: Version View . 62

5.5.3.4 Layer 4: Version Editor . 62

5.5.3.5 Error Hints . 62

6 Discussion 65

6.1 Preliminary Considerations . 65

6.1.1 Participant Bias . 65

6.1.2 Study Design . 66

6.2 RQ1: Exploration in Creative Tool Design 66

6.2.1 RQ1-1: Exploration through Interface Design 67

6.2.2 RQ1-2: Reflection through Tools . 69

6.3 RQ2: Exploration and Reflection in Version Control 70

6.4 RQ3: Improvement over Existing Tools . 71

6.5 Further Suggestions . 72

7 Threats To Validity 75

8 Related Work 77

9 Conclusion 81

Bibliography 83

A Survey 93

B Interview Questions 109

iii

CONTENTS

iv

List of Figures

3.1 An example of IntelliSense in Visual Studio Code. The code completion

suggests several class names directly under the edited line and presents a

brief explanation on the right. 21

3.2 An example of Spotify’s Discover Weekly playlist (left) and the auto-fill

option of the password manager KeePassXC (right). 22

3.3 An example of GitLens in Visual Studio Code. The extension is based on

CodeLens and embeds interactive information into the editor context. 28

3.4 An example of IntelliJ ’s powerful search bar. 29

4.1 A screenshot of the Processing Editor (left) and P5JS Web Editor (right). . 34

4.2 A screenshot of Variolite, as presented by Kery et al. (2). It displays two

nested inline versioning boxes with several saved versions each. 35

4.3 A screenshot of the Ghost Editor, showing the context menu used to create

a snapshot. 36

4.4 A screenshot of the Ghost Editor, showing the code highlight for a snapshot. 36

4.5 A screenshot of the Ghost Editor, showing the version interface. The green

button will save the current state, while the blue slider allows the user to

scrub through all past versions of the selected code block. 37

4.6 A screenshot of the Ghost Editor, showing the version view used to compare

versions. Each version has an AI-generated name and description. 38

4.7 A screenshot of the Ghost Editor, showing the version editor used to modify

versions independent of the main editor. The yellow button will load the

selected version, the green one duplicates it. 38

4.8 A screenshot of the Ghost Editor, showing the expanded colour picker and

inline documentation for the fill function underneath. 40

4.9 A screenshot of the Ghost Editor, showing a simple error hint underneath

the error message. 41

v

LIST OF FIGURES

4.10 Responsibilities as distributed between front- and backend in the Ghost Ed-

itor. The colours indicate suggested responsibilities, according to the Ghost

Framework. 42

4.11 Sequence diagram of frontend interaction. All backend interaction is reduced

to server requests. Figure 4.12 visualizes internal server interactions. 44

4.12 Sequence diagram of a single generic backend operation. 46

4.13 Data scheme for versioning information in the backend. 47

4.14 Frontend components and their relation, coloured according to their respec-

tive interface layers. 48

vi

List of Tables

5.1 Aggregated survey results for both editors. All ratings are provided as av-

erage (Avg.) and median over all participants, together with the respective

standard deviation (σ). Each category has several subcategories, one for

each survey question. The last row is split into Rated and Computed, which

refers to the conclusive rating by the participants and the average result

computed from all question ratings, respectively. Values are rounded to two

digits, except if a value only has 3. Better results are marked in green, dark

green highlights summarizing results. 58

5.2 Aggregated survey results for unique features of the Ghost Editor. Usage

frequency is presented by the absolute number of participants voting for

each option. The winning category is highlighted in green. The abbrevia-

tions Occ. and Som. stand for “occasionally” and “sometimes”, respectively.

All ratings are shown as average (Avg.), median, and with the respective

standard deviation (σ). The different layers refer to the version control user

interface, the error hints to the AI-based debugging suggestions. 61

vii

LIST OF TABLES

viii

1

Introduction

Art is an incredibly flexible discipline. Creatives can produce innovative pieces under any

condition, with every type of tool, and in unthinkable shapes. Art is about pushing the

boundaries and creating something new, something no one has ever done before (3). This

urge to experiment with new ways of (self-)expression ultimately led to the invention of

creative coding, the process of creating art with code (4).

The idea itself is nothing new, and groups like Compos 68 1 have published their work

since the 1960s. However, programming was a relatively new concept at the time, and a

steep learning curve prevented creative coding from becoming a mainstream practice. Since

then, programming languages like Python2 have reduced the entry barrier significantly, and

today a vibrant ecosystem of specialized tools supports creatives on their quest to explore

the power of modern programming.

This has led to a surge in mainstream attention, and successful artists like Refik Anadol

can sell their pieces for prices beyond 1 million dollars3. As an increasing number of

people starts to engage with creative coding, its technological feasibility is put to the test.

While specialized languages and frameworks like Processing4 and P5JS 5 have improved

accessibility, the need for more advanced tooling is growing continuously.

1https://monoskop.org/Compos_68
2https://www.python.org/
3https://archinect.com/news/article/150309579/refik-anadol-s-casa-batll-nft-sells-for

-1-38-million
4https://processing.org/
5https://p5js.org/

1

https://monoskop.org/Compos_68
https://www.python.org/
https://archinect.com/news/article/150309579/refik-anadol-s-casa-batll-nft-sells-for-1-38-million
https://archinect.com/news/article/150309579/refik-anadol-s-casa-batll-nft-sells-for-1-38-million
https://processing.org/
https://p5js.org/

1. INTRODUCTION

1.1 Creative Exploration

A particularly daring challenge is related to the exploratory nature of creative tasks. While

the conventional software development cycle is based on well-defined requirements, cre-

atives are manoeuvring through an unknown space of potential solutions and have to iden-

tify their goals along the way. Sheil (5) faced similar struggles during the experimental

design of artificial intelligence (AI) code and summarized them as exploratory programming.

In contrast to the linear, requirement-driven process of traditional software engineering,

this discipline lacks a pre-determined goal for its outcome. Consequently, exploratory pro-

grammers have to develop their goal in parallel with the actual code, exploring different

ideas along the way (6).

As Sheil’s experience demonstrates, this challenge is not unique to creative coding. Most

disciplines related to data exploration, such as data science and AI design, are affected. In

fact, software engineering also includes exploratory challenges, e.g. debugging code without

knowing the exact problem source (6–8). Nevertheless, these problems are particularly

pronounced in creative coding, as the artist’s intuition entirely guides the outcome. As a

result, creatives often have to experiment with different ideas and create several alternative

versions to decide on their future trajectory.

1.2 Version Control for Exploration

The need to create a multitude of different versions has very practical consequences. These

versions have to be managed carefully as they guide future design decisions. Doing so

manually is likely to end up in a chaotic mess. Software engineers face similar challenges

when documenting a project’s development history and have created a large ecosystem of

version control systems (VCSs). These tools enable efficient recording and management of

versions and serve as a repository of past project states.

However, Sterman et al. (1) uncovered that most current VCSs are unsuitable for the

exploratory nature of creative coding. These tools are optimized for a linear development

cycle and lack crucial features. In particular, few tools enable rapid, parallel version access

to compare past ideas. Instead, they track a linear history converging to a single result.

A more suitable approach is to treat past versions as an “idea repository” that can be

used as inspiration throughout the development process. This has to be supported by

a corresponding user interface, enabling visual version access and an exploration-focused

workflow.

2

1.3 Goal

1.3 Goal

Based on the challenges outlined above, this thesis studies tool design through the lens

of creative coding. The goal is to generalize important principles into a general-purpose

framework for exploratory tool design and test the resulting ideas through a novel VCS.

The final result is evaluated through a user study to validate the conception and design of

both the framework and VCS.

Based on the previous experience of the authors with creative version control (9), the

framework design follows two core principles: the effective exploration of solution spaces

and meaningful (self-)reflection on the exploratory process. Both factors have been identi-

fied as significant contributors to conventional creative processes (1) but are insufficiently

supported by many current programming tools (9). Consequently, they serve as the start-

ing point for this thesis.

1.4 Research Questions

To achieve this goal, a set of research questions was formulated to guide this thesis. The

first question focuses on building an initial design theory based on the specific properties

of creative coding. Sub-questions RQ1-1 and RQ1-2 are designed to highlight interface

design and reflection as core principles within this theory, both of which have a significant

impact on explorative processes according to Mayer and Merino (9).

RQ1 How to bring explorative and creative processes to the core of program-

ming tool design compared to existing tool design, and particularly compared

to existing VCSs such as Git1?

RQ1-1 How can interface design facilitate exploration in programming tools

compared to existing solutions such as command line interfaces or text-based

editors?

RQ1-2 How can programming tools enable reflection on and documentation

of an artefacts’ creation process, beyond providing a simple change log?

The second question is focused on the design of a novel VCS for creative coding based

on the framework created for RQ1. This is necessary to evaluate the framework’s validity

and explore the specific challenges of VCS in more detail.
1https://git-scm.com/

3

https://git-scm.com/

1. INTRODUCTION

RQ2 How can exploratory and reflective processes be integrated into software

version control to facilitate creative coding beyond current support from exist-

ing versioning tools?

Finally, the third question aims to evaluate the framework and prototype compared to

existing tools for creative coding, specifically, the P5JS Web Editor. This is done through

a user study.

RQ3 How do tools facilitating reflection and exploration improve creative cod-

ing, compared to existing tools like the P5JS Web Editor?

1.5 Contributions and Structure

In chapter 2, we begin by defining some context for the design of VCSs and challenges

related to exploratory and creative coding. Based on this background, we then construct

a framework for tool design targeting exploratory coding in chapter 3. Using this frame-

work, chapter 4 derives a specific design for a prototypical VCS. This system is evaluated

employing a user study (chapter 5) and discussed in the context of the previously defined

framework (chapter 6). Then, chapters 7 and 8 comment on threads to the validity of

presented results and alternative approaches from existing literature, respectively. Finally,

chapter 9 concludes this thesis with a final summary of results and suggestions for future

research.

The main contributions of this thesis are the theoretical framework on tool design for

explorative and creative coding, as well as a prototypical implementation in the context of

VCSs. A user study provides insights into the feasibility and usability of the prototype.

In the discussion, the benefits and problems of the prototype are related to the original

framework, and suggestions for future tool design are derived.

4

2

Background

Creating an exploratory tool design framework necessitates a deep understanding of cre-

ative processes. Thus, this chapter characterizes the exploratory code of creative coding

and extrapolates its impact on version control systems.

2.1 Exploratory Programming

In chapter 1, we briefly defined exploratory programming as a subset of programming tasks

without predefined goals. Such tasks require practitioners to consider various outcomes

and explore them through code. Kery and Myers (6) summarize this idea in two properties:

Property 1 “The programmer writes code as a medium to prototype or experiment with

different ideas.” (6)

Property 2 “The programmer is not just attempting to engineer working code to match

a specification. The goal is open-ended and evolves through the process of program-

ming.” (6)

These principles point to a distinct difference in mindset between conventional program-

ming and exploratory coding. Traditionally, programmers seek to model a predefined

outcome as efficiently as possible. Meanwhile, exploratory programmers navigate an am-

biguous solution space without defined boundaries to create innovative solutions. This

requires them to leave established solution blueprints behind and overcome continually

evolving challenges.

Property 1 expresses the general spirit of exploratory programming. Instead of building

a product, programmers build ideas, testing and iterating on them repeatedly. According

5

2. BACKGROUND

to Property 2, this helps to build a deeper understanding of the domain and shapes the

project goal.

2.1.1 The Need for Exploration

The necessity for exploration is not unique to creative applications. In practice, many

common programming tasks are inherently exploratory. Kery and Myers (6) extract the

following exploratory problem categories:

1. Playfully Learning Programming

2. Creative Tasks in Art and Music

3. Data Science

4. Certain Exploratory Tasks in Software Engineering (e.g., Algorithm Design)

These problems have specific goals, such as creating a beautiful picture or learning a new

programming language. However, there is no universal blueprint for guaranteed success.

Instead, programmers must build an intuitive understanding of their domain and develop

a solution through trial and error.

Data science is an excellent example to illustrate this principle. Most abstract data sets

do not readily provide comprehensive insights, and establishing the correct course of action

is challenging. Thus, programmers must test different approaches to effectively leverage the

data at hand. Crucially, their intuition guides them in selecting suitable analysis methods,

and as they learn more about their task, this intuition improves.

2.1.2 The Exploratory Process

An unconventional new programming process emerges when considering these exploratory

challenges in greater detail. Instead of designing software according to existing spec-

ifications, practical experiments drive the development. Programmers create hands-on

prototypes and iteratively improve their design (6, 10).

Significantly, every new idea can evolve throughout the process and inspire future modi-

fications. The ambiguous nature of exploratory coding means there is no definitive way to

evaluate different approaches. Consequently, a previously rejected concept can serve as an

opportunity in the face of a new problem, resulting in a non-linear development process

guided by the developer’s intuition. Within this process, all versions hold the same value,

and together, they synthesize a clear picture of the solution space.

6

2.1 Exploratory Programming

In contrast, conventional programming continuously evolves a single artefact, and every

new version permanently replaces its predecessor. Past versions only serve as a fallback in

case of irreparable corruption of the latest state, manifesting a linear development cycle.

These differences have substantial practical implications. Exploratory programmers fre-

quently reiterate previous versions, appropriating them to a continuously changing envi-

ronment. While necessary, frequently adapting code on such a fundamental level tends to

degrade quality and affect oversight. Hence, exploratory programmers are in dire need of

practical solutions to these challenges.

2.1.3 Exploratory Tooling

Naturally, the conventional software development process is not free of iteration. Modern

agile methodology encourages fast, iterative production cycles with regular refactoring

(11, 12). Concurrently, complex software components can require local use of exploratory

patterns despite existing requirement specifications.

As a result, it seems reasonable to assume strong support for iteration and exploration

in the existing tool ecosystem. In reality, few meaningful options exist. Most notable are

the so-called “notebooks” (e.g., Jupyter Notebook1, interactive environments integrating

code and formatted documentation into a single file. They are used to document design

intentions alongside the experimental code to improve oversight and long-term usability.

However, the complexity of managing alternative versions remains.

The academic literature proposes additional solutions, for instance, programming pat-

terns to streamline exploration (13) and specific programming languages for increased

iteration speeds (10). However, in summary, tool support for exploratory programming

remains sparse.

The lack of specialized tools is especially problematic for version management, as the

non-linear exploratory process can lead to a somewhat chaotic version history. Currently,

tools like Git are too linear in their design, preventing effective use of past versions in

an exploratory sense. Instead, many creative coders pivot to manual approaches, such as

recording alternative versions in separate files and commenting out code (1), risking code

quality and maintainability.

Few attempts have been made to address this issue, most of them focusing on so-called

“micro-versioning” or “local versioning”. While conventional VCSs usually track changes

per file, these tools enable versioning on a semantic level. For instance, Variolite allows

1https://jupyter.org/

7

https://jupyter.org/

2. BACKGROUND

users to select arbitrary blocks of code and makes saved versions available inside the editor

directly (2). Mikami et al. (14) explored an alternative approach, automatically grouping

individual changes into semantically meaningful versions.

However, while promising, most of these approaches are not production-ready and limit

workflow flexibility. E.g., Variolite is only available for the discontinued Atom editor1.

Consequently, most exploratory programmers continue to struggle with manual processes.

2.2 Creative Coding

Creative coding is extremely versatile. It enables the creation of pictures, videos, inter-

active graphics, music, and even physical experiences, e.g., when creating a large-scale

programmable light installation. Practitioners can even perform real-time shows in the

form of live coding (4, 15, 16).

All of these applications are highly exploratory. Creatives experiment with various ap-

proaches to achieve the desired result, and there are no objective measures to assess quality.

The relationship between creative processes and exploration is well-known and has been

studied extensively before (1, 17). However, creative coding has unique challenges beyond

exploration, as discussed below.

2.2.1 Code and Creativity

While regarded as a technical discipline, programming heavily relies on creativity (1, 18,

19). Complex problems, such as designing powerful algorithms, frequently necessitate

innovative and creative solutions to achieve the desired outcome.

However, in most cases, creativity is part of the process, not the result. In fact, most

programs are created with predictability in mind (20, 21). Unexpected, creative outputs

are undesirable and a sign of bad software design. The opposite is true for creative cod-

ing. Here, the developer strives for unique and striking results beyond the spectator’s

imagination. Under these conditions, even technically wrong code can match the posed

expectations.

Consequently, the shape of creativity transforms with its purpose. While operating as a

solution engine in the hands of a conventional programmer, it becomes the very purpose

of programming for creative practitioners.

In practice, creative coding primarily manifests through its exploratory nature. Prac-

titioners face the challenges of a non-linear workflow and ambiguous solution space. The
1https://github.blog/2022-06-08-sunsetting-atom/

8

https://github.blog/2022-06-08-sunsetting-atom/

2.2 Creative Coding

growing suite of specialized tools for creative coding may improve accessibility; however,

the varying types of created media are largely incompatible with existing tool chains (e.g.,

using Git to store large binary files such as videos) and introduce additional overhead.

Finally, creating artistic artefacts is fundamentally different from solving technical pro-

gramming tasks. The adapted methodology can influence requirements for the develop-

ment process, e.g., a programmer generating images needs a way to compare results visually

rather than a conventional debugger.

2.2.2 Tools for Creative Coding

There are several design philosophies regarding creative coding tools, likely due to the

flexibility and complexity of program code. These approaches range from conventional

code editors to advanced node-based graph editors with UI-based workflows. Each method

is optimized for different use cases and addresses a specific user group.

The “traditional” approach is most comparable to conventional programming. Tools

like Processing are often based on general-purpose programming languages like Java1 and

provide powerful interfaces to create artistic artefacts. While highly versatile, the initial

complexity of learning to program reduces accessibility. However, a code-first approach

enables integration with existing tools and directly benefits from programming research,

making it the ideal contender for this thesis.

Other approaches emphasize usability and wrap standard program code in simplified

user interfaces. vvvv2 uses a node-based interface to visually compose complex operations.

This approach is equally powerful yet easier to learn. On the other hand, users are locked

into the existing ecosystem with limited flexibility and configuration options.

Some hybrid approaches combine these concepts to enable a visual coding experience.

An example is Stamper (22), a node-based code editor that introduces a visually structured

editing experience.

However, most of these tools only address the creation of creative code. Peripheral tools

such as VCSs have to cope with the variety of these existing tools and the complexity

of exploration. As a result, the support tool ecosystem for creative coding is currently

lacking.

1https://www.java.com/
2https://visualprogramming.net/

9

https://www.java.com/
https://visualprogramming.net/

2. BACKGROUND

2.3 Version Control Systems

Producing a new artefact is commonly associated with creating versions. In most cases,

these versions represent consecutive changes as the artefact develops, building up to a final

result (1, 23). This applies to most exploratory and creative domains, just as to more

technical fields like programming, engineering, and many handicrafts.

While recording and managing these versions is not required to create an artefact, prac-

titioners can benefit significantly from doing so. Most importantly, saved versions serve as

a fail-safe in case the created artefact is damaged or lost.

Furthermore, past versions document the artefact’s creation in detail and can serve

as the foundation for collaboration. The latter is crucial for digital applications such

as programming, 3D modelling, and image editing. In these cases, team members can

synchronize modifications efficiently by sharing a detailed editing history (24–26).

2.3.1 Version Management

Version management is concerned with the creation and exploitation of a version history.

In particular, it is about recording meaningful sets of changes as versions and making them

accessible for future use.

Solving these tasks is certainly challenging, in particular, as every domain has unique

versioning requirements. Factors such as the version medium (e.g., physical sketches,

digital files), workflow requirements (e.g., collaborative work, tool and space availability),

and process limitations (e.g., exploratory process, linear process) have a substantial impact

on any potential solution (1, 14, 27).

According to Sterman et al. (1), most creative applications still require manual version-

ing through sketches, photographs, handwritten notes, or, in the case of creative coding,

copying code into new files and commenting code out. However, these procedures are

error-prone and can result in significant chaos.

Tool-supported methods have been proposed for several use cases, often in the form

of so-called version control systems (VCS). These tools provide means of recording and

managing versions automatically, often digitally. However, only a few solutions are widely

accepted, and existing ones are mostly limited to a single domain (e.g., (28–30)).

Programming poses as a standout example, with version control systems for program

code rising in popularity since the introduction of the original Source Code Control System

(SCCS) in 1975 (31). Since then, similar tools have become industry-standard, with version

10

2.3 Version Control Systems

management platforms like GitHub1 reaching more than 100 million users2. The core design

goal for these tools, are collaboration and failure-recovery, with a clear emphasis on linear

development processes (9, 32, 33).

A key issue with these solutions is their unintuitive user interface. Users must overcome a

steep learning curve to benefit from the most powerful features, and most users never reach

their full potential (34, 35). Additionally, these VCSs only define the content and format

of versions (e.g., source code files). Recording new versions remains a user responsibility

(e.g., creating a commit in Git), which means they might forget to save important progress.

More automated approaches can be found in other digital domains, such as image editing

or 3D modelling. In these cases, editing tools and version control are frequently heavily

intertwined, such that each editing step is recorded as a new version automatically (29, 36,

37). However, the vast version histories generated in these cases can overwhelm the user,

making it hard to identify specific versions.

On the other hand, physical versions present entirely new challenges. While meaningful

versions are generated automatically (e.g., sketches, the actual physical object), managing

them requires manual work (e.g., filing papers, moving objects). Tool support can only

provide some fundamental guidance, and reconstruction of previous versions is labour-

intensive (1, 38).

In summary, version management remains highly challenging, with different require-

ments for each domain, and a “one-size-fits-all” solution does not exist. Consequently, the

following section extracts the most important requirements for version management in cre-

ative applications, specifically creative coding, to provide a baseline understanding of the

requirements for this thesis.

2.3.2 Creative Version Control

A good way to start understanding version control in creative coding is by looking at

versioning in the creative process in general. Sterman et al. (1) do so by means of several

interviews, talking to industry professionals in different creative and/or exploratory roles,

including artists, (creative) programmers, artisans, researchers, and others. Based on

these interviews, they identify four ways in which effective version management can aid

the creative process:

1https://github.com/
2https://github.blog/2023-01-25-100-million-developers-and-counting/

11

https://github.com/
https://github.blog/2023-01-25-100-million-developers-and-counting/

2. BACKGROUND

Palette The idea that old versions can serve as a palette of ideas and inspiration that

can be reused repeatedly, even beyond the boundaries of a single project. Instead

of using versions to recover from mistakes, they become the practitioner’s personal

repository of tools for new projects.

Freedom Similar to how programmers use version control, it can help creatives to recover

from mistakes without losing too much progress. However, more importantly, the

knowledge that one can recover from such mistakes gives creatives the freedom to ex-

plore their ideas without fear of destroying their current progress. This is immensely

important, as exploration is at the core of creative tasks. A fear of exploring unusual

or strange ideas is thus a serious limitation for creatives.

Fidelity A key challenge discussed previously is the format of a recorded version. It is

not always trivial to decide what should be part of a new version, but intuitively,

including as much detail as possible may seem logical. This is an excellent idea in

many cases, as it allows one to retract past steps accurately, reducing ambiguity.

However, Sterman et al. (1) argue that a reduction in version fidelity can lead to

unexpected re-interpretation of old work, further aiding exploration. This supports

spontaneity, variation, and adaptation, which can be essential for the creative process.

As such, it should be possible for a practitioner to choose a suitable level of fidelity

instead of being locked into a predefined system.

Timescale As mentioned before, version histories can be used to document an artefact

and allow understanding of its creation after the fact. Sterman et al. (1) believe this

should be emphasized further, making sure versions are kept available across multiple

projects to allow for active reflection on the personal process. This way, creatives

can rework their ideas and improve over time more efficiently.

These four themes are extracted from the description of the interviewees’ personal work-

flows. Together, and they characterize the real-world requirements of creative practitioners.

Interestingly, these interviews include several programmers from exploratory and creative

domains. While most of them are aware of existing version control systems such as Git,

some explicitly chose different versioning processes in their everyday workflows, and de-

scribed these systems as unsuitable. One participant felt Git was designed to follow a

single direction in order to make progress fast, while they were aiming at diversity instead.

This points to a mismatch between traditional program code VCSs and the creative need

for exploration.

12

2.3 Version Control Systems

This mismatch was further investigated in a preceding literature study on the topic

(9). Based on the four concepts described above, a number of creative (coding) versioning

tools from different domains were analyzed to understand how these tools address creative

needs and in which way existing tools for programmers fall short. The most frequently

addressed factors across all of these tools were Freedom and collaboration. Consequently,

the technical foundations across these tools tend to be similar, although differences are

implied by varying media types.

However, when considering the intended use of versions, major differences were identified:

While programming tools often support a linear development process (e.g., Git), many

creative tools aim at rapid, parallel version access and efficient reuse of old versions (1,

38, 39), both of which are linked to a Palette type of versioning. While there have been

some attempts to achieve similar functionality for program code, they are rather limited

and sparse (2, 14, 40). This imbalance indicates a potential future path for new creative

coding versioning tools.

Furthermore, it should be noted that both Fidelity and Timescale were severely un-

derrepresented in the results. This is true for creative approaches but even more so for

programming-oriented methods. In case of Fidelity, this may be related to digital nature

of most tools. Digital resources can easily be duplicated and stored, leading to a tendency

of data hoarding (41). Additionally, it is rather difficult to define low-fidelity in media such

as program code.

Management of versions across long timescales, on the other hand, seems to be an af-

terthought for most practitioners, especially in the programming domain, and many pro-

fessionals openly acknowledge their lack of retrospection (1). Most tools approaching this

issue are concerned with progress documentation through tutorial generation (42) and the

efficient reuse of old components (40, 43). Rarely, tools were designed to spark reflection

or inspiration based on old versions.

Based on these insights, VCSs for program code already provide sufficient peace of mind

for creatives when saving versions regularly. However, their focus on linear development

processes with no meaningful perspective on the reuse of old versions conflicts with the

exploratory process driving many creatives. As such, the following two core principles

should guide the design of version control for creative coding and exploratory programming

in general:

13

2. BACKGROUND

Exploration of Solution Space

Firstly, to successfully support creatives on their journey through the uncertainty of their

domain, versioning tools should allow for rapid versioning with little to no overhead. In-

stead of complicated command line interfaces (CLI) with multiple stages for version cre-

ation, it should be a one-click solution that works instantly.

Furthermore, versions should be placed front and center as a primary resource to work

with. Version access should be rapid and visual to allow for instant comparison and re-

flection. Instead of creating a sequential history, each version should be equally important

while maintaining the original structure of the project. And finally, versioning may not

obfuscate the creative process through merging conflicts and unexpected states (e.g., de-

tached head in Git), but enable fast iteration and quick experimentation.

It should be noted that these suggestions are supposed to represent the general ideals

of improving exploration through the use of versions. The exact ways to achieve this may

be specific to the use case at hand. However, generally, these suggestions aim to enable

Palette versioning as described by Sterman et al. (1) without affecting the ability to

recover past project state at any time.

Reflection

Secondly, reflection on personal achievements and processes should be considered key to

creative success. Exploring a vast solution space in the search for the best results is

challenging and heavily relies on the practitioner’s intuition and experience (1, 44). Thus,

it is crucial to understand the personal strengths and weaknesses, and how to improve. This

is impossible without reflecting on previous work, and there is no better way to document

this work than through a meaningful version of history. And even beyond that, such a

history can serve as inspiration and invoke old ideas in a new context. Currently, these

practices are somewhat neglected by professional programmers, and tools such as Git do

not provide intuitive interfaces to do so (1). Much can still be done to improve in this area

and fully embrace Timescale versioning.

2.3.3 The Interface Problem

Finally, we would like to point out that both of these recommendations, at their core,

are interface problems. As mentioned previously, the technical foundations of different

versioning systems may differ according to the used media types, but are conceptually

similar. At the same time, modern version control for code is extremely powerful and

14

2.3 Version Control Systems

theoretically already supports many of the features necessary to enable effective exploration

and reflection. Unfortunately, these tools are equipped with rather technical interfaces

designed for efficient collaborative code development. These interfaces often do not meet

the requirements of creative practitioners and harm the benefits these tools could bring to

them. As such, much of this thesis is concerned with interface design.

15

2. BACKGROUND

16

3

Concept

After identifying the core challenges that must be addressed for creative version control in

subsection 2.3.2, the following chapter develops a framework for tool design based on these

challenges. The first step in doing so is to understand the role of confidence in exploratory

processes, and how it can improve the final results.

3.1 The Confidence Crisis

Fast iterations are key for successful exploration. They are required to test out ideas quickly

and identify good solutions in an otherwise underexplored solution space (1, 45–47). As

such, increased iteration speed can be extremely beneficial for exploratory programmers.

However, in many cases, fast iterations come at the cost of code quality. This is particularly

true in an environment that requires many changes for the same piece of code. In these

cases, programmers might be compelled to save time by skipping documentation, writing

badly structured code, or neglecting version management under the premise of creating “a

better version” with every change (6).

Some programmers deem versioning tools such as Git to be overly complicated and

slowing down development. As such, they might opt for more rudimentary versioning

concept, such as commenting out code or duplicating files (1, 2). This can result in even

more chaos, and a lack of oversight. Either way, these practices hurt the exploratory

process as soon as access to previous versions is required.

Dealing with these issues on an everyday basis, programmers might develop an aversion

to change, lacking the confidence to experiment with vast or complex changes for the sake

of preserving their progress (1). This can severely harm their ability to identify unique

17

3. CONCEPT

and innovative solutions. This also explains the results of subsection 2.3.2, indicating that

Freedom is the most popular benefit of versioning tools (9).

Traditional VCSs for program code have no satisfactory solution to this problem. Instead,

they are designed to manage successive changes in a linear development flow, and lack

interfaces that would enable the rapid and parallel version access required for exploratory

processes. This results in a crisis of confidence.

3.2 Exploring with a Map

To gain a deeper understanding of this crisis, we can explore the following analogy: An

explorer, wandering through unknown territories in search of treasure, wants to avoid

getting lost. A good tool aiding his navigation would be a map. Unfortunately, no map is

available yet. So instead of wandering about blindly, the explorer creates a map along his

way, updating it whenever he uncovers something new.

If we now put a developer into the shoes of our explorer, we must imagine the unexplored

solution space as our territory. The map is represented by the version history captured

throughout the development, and allows us to understand our current path. Creating such

a map can be a tedious process, and capturing a detailed representation of our surroundings

requires a significant time investment. However, if we spend more time creating our map,

we have less time to explore the solutions space, and we might miss valuable results.

There are several ways to face this dilemma. First and foremost, it is important to

maintain a delicate balance between the exploration of new ideas and version manage-

ment. Spending too much time on version management will compromise idea exploration.

Meanwhile, having no version history at all can derail the development process in case of

errors and other unexpected events. Unfortunately, finding the right balance is a reoccur-

ring challenge with each new project. As such, it is difficult to design a tool around this

balance alone.

If we return to our analogy instead, we can consider the following alternative: Instead of

drawing the map himself, the explorer could hire an assistant. Under these circumstances,

he could focus completely on his exploration, while still receiving a map.

Translating this idea to exploratory programming, the assistant comes in the form of

a VCS. This version control assistant (VCA) records the complete development process

in the background, while developers only mark the most important versions for improved

accessibility in the future. As such, many manual versioning task can be eliminated, e.g.,

setting up project repositories, configuring included and excluded files, or saving versions

18

3.3 The Ghost Framework

manually (35). Concurrently, such a system would guarantee safe storage of all progress

at all times.

Based on this idea, we proposes the hypothesis that gathering version information opti-

mistically in the background can benefit exploratory programming through an increase in

confidence, while decreasing version management overhead compared to traditional VCSs

such as Git. Instead of settling for a sparse set of manually creative versions, a hybrid

version history combines in-depth documentation of the development process with rapid

access to the most important versions selected by the developer. This process can be

optimized even further by suggesting important versions automatically based on optional

configuration information or heuristic analysis of the version history (14).

However, several limitations have to be considered. Firstly, we must acknowledge, the

digital nature of such an assistant. As a consequence, it can only record digital artefacts,

and could miss out on important version information generated beyond this limited space of

resources. In fact, it is most likely such an assistant would focus on source code exclusively.

Other artefacts such as architectural sketches, (handwritten) notes, and developer discus-

sions are often too unstructured to be recorded automatically without user intervention

(48).

Furthermore, the scope versions must be defined in advance. Tools such as Git track

changes on a file-level, and provide line-by-line comparisons between versions (33). While

this may be sufficient for some developers, others might prefer tracking changes for indi-

vidual functions, or even characters in the source code. This could be configured to the

user’s needs, however, requires additional consideration.

Finally, tracking versions alone will not suffice in creating a helpful assistant. As men-

tioned in subsection 2.3.3, the most important challenge concerns the user interface, as it

fundamentally defines how versions will be used. If the interface is not beneficial to an

exploratory process, the tool’s value is diminished.

3.3 The Ghost Framework

The concepts presented in the previous section are tailored specifically to version control

systems. We generalize them under the term Intuitive Assistive Automation (IAA) in

the following section, as we believe these ideas can benefit tool design for creative and

exploratory domains beyond version control as well. These findings are then used to

present the Ghost Framework, formulating core values and practices required to embed

19

3. CONCEPT

IAA into programming tools. This framework is used in chapter 4 to implement a VCS

prototype for creative coding.

3.3.1 An In-Depth Look: Intuitive Assistive Automation

The term Intuitive Assistive Automation immediately provides a useful hierarchy to un-

derstand the core principles behind the Ghost Framework :

Intuitiveness Intuitive use is widely understood as the unconscious application of prior

knowledge to the interaction with a new system or product, increasing the effective-

ness of said interaction (49, 50). Accordingly, intuitiveness describes a design quality

facilitating such knowledge application. Techniques to foster intuitiveness include the

use of well-known interface components and metaphor-based design (50–53). Tools

following these principles can improve user understanding and, in turn, elevate their

effectiveness and value to the user.

Assistance Numerous theories on effective tool design exist, and in certain scenarios,

especially potent tools may necessitate the adoption of a predefined process to un-

lock their full potential (54). However, the exploratory process inherent in creative

coding is built on the practitioner’s intuition and experience (55–57), resulting in

an extremely specialized process. As such, the Ghost Framework advocates assistive

tool design that accommodates to pre-existing processes and adapts dynamically.

Workflows disruptions should be avoided, and tools should seamlessly support the

user with proactive suggestions.

Automation Finally, the Ghost Framework employs automation as a key enabler for an

intuitive workflow actively assisting the user. Rather than offering a static toolbox for

manual operations, the framework advocates for a data-driven, automated process

informed by user’s behaviour. Analyzing the user’s workflow in real-time enables

anticipation of future operations and helps to streamline the tool’s use. Furthermore,

non-destructive operations can be optimistically executed and precede the user’s

eventual needs. All of this may be done in the background, providing active assistance

only when required. Context cues can be used to suggest operations when necessary.

Based on these ideas, the Ghost Framework strives for a new generation of powerful tools

solving problems in real-time without disrupting existing workflows. This is particularly

20

3.3 The Ghost Framework

important for exploratory tasks, but can benefit programmers independently of their do-

main. Tools should step up into an active role, and act as autonomous assistants, rather

than passive toolboxes.

The name “Ghost Framework ” captures the essence of IAA’s assistive, background-

oriented nature. Much like a ghost, these tools are operating discretely, out of sight, and

interact with the user through subtle, context-sensitive prompts. They are the metaphori-

cal “ghost in the machine”, always seeking for opportunities to improve while remaining in

the background.

3.3.2 IAA in Practice

Naturally, some existing tools already embody the principles of Intuitive Assistive Automa-

tion. A prime example is Microsoft’s IntelliSense1. This advanced code completion tool

continuously analyses the user’s code, comparing it to existing documentation and other

code segments. Based on the results, IntelliSense offers real-time completions while typing,

including token names (e.g., variables or class names) and meta-information such as pa-

rameter definitions for functions. Additionally, the tool can display relevant documentation

in-context, as demonstrated in Figure 3.1.

Figure 3.1: An example of IntelliSense in Visual Studio Code. The code completion suggests
several class names directly under the edited line and presents a brief explanation on the right.

1https://code.visualstudio.com/docs/editor/intellisense

21

https://code.visualstudio.com/docs/editor/intellisense

3. CONCEPT

Thanks to its recent integration with GitHub Copilot1, IntelliSense now also supports

advanced AI-powered suggestions beyond simple token completion. Copilot can generate

functional code snippets based on existing code and comments, formulate documentation,

and provide additional functionality like code tests.

Crucially, these interactions are seamlessly embedded into the development workflow.

Completions are instantaneously provided as the user types, without obstructing the coding

process itself. Suggestions remain optional, and rejecting them requires no additional

effort. Temporary documentation appears beneath the current code line, and disappears

once editing stops. IntelliSense even learns from user behaviour, adapting suggestions to

the user’s coding style and the existing code base.

All of this makes IntelliSense an incredibly versatile tool, enriching the coding experience

for many developers. Furthermore, its integration in the widely used Visual Studio Code

editor2 requires minimal setup, making it easily accessible to anyone.

Beyond programming, tools like Spotify’s Discover Weekly feature3 and password man-

agers like KeePassXC 4 present similar IAA principles. Spotify curates weekly playlists for

each user based on their listening habits, while password managers, often equipped with

special browser plugins, record login data automatically. Once a login was saved, it can be

automated in the future (see Figure 3.2).

Figure 3.2: An example of Spotify’s Discover Weekly playlist (left) and the auto-fill option
of the password manager KeePassXC (right).

1https://github.com/features/copilot
2https://code.visualstudio.com/
3https://medium.com/the-sound-of-ai/spotifys-discover-weekly-explained-breaking-from-y

our-music-bubble-or-maybe-not-b506da144123
4https://keepassxc.org/

22

https://github.com/features/copilot
https://code.visualstudio.com/
https://medium.com/the-sound-of-ai/spotifys-discover-weekly-explained-breaking-from-your-music-bubble-or-maybe-not-b506da144123
https://medium.com/the-sound-of-ai/spotifys-discover-weekly-explained-breaking-from-your-music-bubble-or-maybe-not-b506da144123
https://keepassxc.org/

3.3 The Ghost Framework

Both tools operate unobtrusively in the background. If contextually relevant, they assist

users without interrupting their routine. This proactive background support is character-

istic for the IAA design philosophy.

3.3.3 Trusting in Ghosts

While the Ghost Framework is primarily designed for exploratory coding, it should be

generic enough to accommodate various tool types. Consequently, concepts specific to

VCSs are not incorporated. This also includes the two core principles of creative version

control identified in subsection 2.3.2, exploration and reflection. Although important, they

are too specific, and instead addressed when using the Ghost Framework to design a VCS

prototype in chapter 4.

However, throughout this thesis, confidence emerged as a key factor for effective explo-

ration. The observation of the confidence crisis detailed in section 3.1 is, in fact, a primary

motivator for the design of this framework. As a result, we believe confidence deserves a

central role within the Ghost Framework.

In practice, tools have to earn the user’s trust, empowering developers to engage in

experimentation without concerns or anxiety. Such trust can be cultivated through the

following three principles:

Data Integrity First and foremost, maintaining data integrity is crucial. This is espe-

cially important for tools modifying code directly. For instance, Microsoft’s Intel-

liSense must ensure that the insertion of code suggestions has no unexpected side

effects. Preserving the user’s data is exceedingly important.

Control Second, users must always retain control. A tool may prepare and propose oper-

ations, but explicit user consent should be mandatory and rejecting a suggestion the

preferred default option. Additionally, the user should have the ability to overwrite

tool operations and customize results. IntelliSense, for instance, integrates with the

conventional undo/redo system in Visual Studio Code.

Transparency Finally, transparency is key to obtain the user’s trust. This includes in-

sights into collected data and predictable operations. If users have privacy concerns,

they might hesitate to provide required information. Concurrently, it must be clear

how operations work, and what their impact will be. This is a common issue with

many tools using artificial intelligence, such as GitHub Copilot. These tools have no

predictable outcome, and require manual supervision by the user (58).

23

3. CONCEPT

Adhering to these principles allows users to understand and trust the tools. They can be

sure of their code’s safety and consistently understand the tool’s impact on their project.

Above all, they can take agency, and remain in full control of both their results and

processes. That is an important step in building a synergistic relationship between user

and tool to maximize their combined potential.

3.3.4 Building Tools with the Ghost Framework

After previously conceptualizing the Ghost Framework, we now propose guidelines on how

to use it in practice. For these guidelines, the traditional separation of front- and backend

in software design serves as a logical boundary. The frontend is concerned with intuitive,

context-aware user interaction, while the backend handles background activities like data

collection and analysis, as well as tool operations.

3.3.4.1 Backend Design: Data-Driven Tool Support

In the Ghost Framework, the backend is at a tool’s heart. Whenever a developer is editing

code, the backend analyses every step he takes, patiently waiting for an opportunity to

help. Depending on the tool’s requirements, the backend can do many different things.

However, the most important tasks are discussed below.

Data Collection While not always required, many tools require certain data to work

properly. For VCSs, this may be data representing code changes, while a tool like

IntelliSense requires an index of existing variables, classes, and functions. In many

cases, this data is constantly evolving. Then, the backend has to keep track of changes

and update its knowledge of the project.

Data Processing Sometimes, raw data is insufficient. Additional processing of captured

information may be required to unlock a tool’s full potential. For instance, Spotify

has to analyse a user’s listening habits to learn their preferences. Similarly, a VCS

will likely transform captured data into a format that enables efficient versioning.

Processing data in advance can profoundly benefit tool performance, especially when

expensive computation is required.

Tool Operations Most importantly, the backend performs any tool operations requested

by the user. This can include database operations, on-demand data processing,

advanced code modifications and more. The exact operations required are defined

24

3.3 The Ghost Framework

by the tool’s feature set, and all communication with the end user is performed

through the frontend.

Context Analysis A fundamental idea of the Ghost Framework is to make tools au-

tonomous assistants. Instead of passively waiting for the user’s command, tools

proactively provide support. However, to do so in an unobstructive and helpful way,

the tool has to understand the workflow context. Consequently, the backend has to

monitor the editing process closely, searching for contextual triggers before suggesting

any operations.

Additionally, context knowledge can be used to personalize the user’s experience by

identifying patterns in their workflow. If they use the tool in certain ways, suggestions

can be tailored to be more targeted and efficient.

Naturally, the requirements for each of these categories can differ significantly for different

tools. Core features will likely translate to a set of tool operations, with data collection

and processing supporting efficient execution of these operations. The context analysis is

most susceptible to domain-specific requirements, and necessitates a deep understanding

of the tool’s usage patterns. However, this analysis plays a crucial role in elevating the tool

to an active assistant. As a result, significant attention should be directed to its design.

The principles of Intuitive Assistive Automation have to be considered throughout the

design, with an emphasis on assistive automation. Concurrently, data integrity and trans-

parency has to be a primary concern when collecting, processing, and using data. At all

times, the user should retain control over their data and work.

In practice, the design specifics depend on the unique tool requirements. Nonetheless,

some general guidelines can be derived from literature on software design. Privacy-centric

software design is particularly interesting when building software that instils confidence.

For instance, Hoepman (59) advocates for design strategies that inherently enforce privacy

and suggests concrete design patterns such as access control and data breach notifica-

tions. Similarly, Zieglmeier and Pretschner (60) present a framework for design-based

transparency, with independent components for data monitoring and result verification to

ensure accurate insights.

Literature on assistive systems with autonomous components is relatively sparse in the

domain of programming tool design. However, robotics research can serve as inspiration.

Meng and Lee (61) suggests a number of useful design principles, including continuous

self-improvement through adaptive learning and robust operation across diverse condition

by means of action variability.

25

3. CONCEPT

Finally, operational accuracy and data integrity can be achieved through rigorous soft-

ware testing. This allows the verification of quality attributes, and builds confidence in

the tool’s functionality (62, 63).

3.3.4.2 Frontend Design: User Interaction

The frontend is responsible for all user interactions, and communicates with the developer

through a user interface. Fundamentally, this interface has to be designed around the

IAA principles of intuitiveness and assistance to enable effortless, predictable workflows.

Moreover, it has to inspire confidence through extensive user control and transparency. In

this way, the interface directly adheres to the core values of the Ghost Framework, and

should be compatible with exploratory processes.

However, these terms do not inspire specific design recommendations. Yet, in contrast

to backend design, there is a multitude of universally applicable research on user interface

design that can provide concrete guidance. Specifically, Ben Shneiderman has provided

many insights into user interface design, focusing on creativity support tools in particular

(64–66). He presented the idea of “[d]esign with low thresholds, high ceilings, and wide

walls” (66), which serves as the foundation of interface design in the Ghost Framework.

Shneiderman used this metaphorical description to suggest three desirable attributes in

tools designed for creativity:

Low Entry Barrier Any tool supporting creativity should be easy to use for novices.

This way, the tool remains approachable, and can be adopted quickly. Shneiderman

suggests this can be achieved by means of multilayer interface design (67, 68). Instead

of building an interface presenting all features at once, the user starts with a limited

selection of tool operations, enabling other features when needed. This is a common

technique, and a well-known example are Google’s advanced search options, that can

be toggled by the user.

Shneiderman’s layer 1 is thereby representative of the most limited feature set a

user will encounter when using the application (67). The main design objective in

this layer should be simplicity, allowing novices to learn the tool’s basic concepts

and features. For the purpose of the Ghost Framework, we suggest an additional,

optional layer 0, or hidden layer.

While some tools require a basic set of features at all times (e.g., a code editor), other

tools are based on infrequent interactions instead (e.g., a version control system). In

these cases, the hidden layer will conceal the tool completely, leaving the developer’s

26

3.3 The Ghost Framework

workflow unperturbed. Contextual suggestions serve as primary interaction basis,

superseding manual user prompts. When accepting a suggestion, the tool may present

additional layers required to execute the desired operation, and hide them after

completion.

If designed correctly, the user should never have to open any layers manually. This

way, the tool’s visual complexity is reduced to a minimum. However, the tool’s full

feature set should be accessible manually as well, in case the context analysis fails to

detect the user’s needs automatically. This can be achieved through (context) menus

or shortcuts.

Tool Depth When speaking about “[...] high ceilings [...] ”, Shneiderman indicates that

a tool should be approachable without sacrificing complexity or depth. This makes

sense, a tool sacrificing its core functionality by catering to novices can serve as an

educational example, but is unlikely to aid advanced users.

Multilayer interface design can help to isolate complexity into separate interface

layers, but the design of intuitive, yet powerful interfaces is highly domain specific.

The literature on user interface design suggests some general patterns, such as design

metaphors (52, 53, 69), but more specific recommendations can only be made in the

tool’s specific context.

Tool Scope Finally, Shneiderman’s “[...] wide walls” refer to the tool’s scope. He suggests

that good tools should cover as much functionality as possible, and interface efficiently

with other tools when required. This reduces friction and frustration generated by

frequent tool switching, file conversions, and other chores required when working

with different tools (66).

Again, multilayer interface design can be used to manage complexity introduced by

the interaction of different features in the same tool. However, instead of building

large, monolithic tools, the Ghost Framework advocates for a platform approach.

In practice, many practitioners already use well-established tools as part of their basic

workflow (e.g., code editors or IDEs). Today, many of these tools support extensions,

enabling real-time interaction between tools in a unified environment1. This allows

developers to create their own, custom tool suite from a vivid environment of plugins

and extensions. Tool designers can capitalize on these circumstances by emphasizing
1An example is Visual Studio Code, with a large library of extensions: https://marketplace.visual

studio.com/vscode.

27

https://marketplace.visualstudio.com/vscode
https://marketplace.visualstudio.com/vscode

3. CONCEPT

key tool features, while basic functionality like editing code or file management are

provided through the environment. Often, editor environments even provide direct

interfaces to interact with the user’s code efficiently.

In the context of multilayer interface design, the basic tool, for instance a code editor

like Visual Studio Code, serves as layer 1, while extending tools start with a hidden

layer on top of the editor.

While Shneiderman’s theory guides the structure of the frontend, the specific design of

individual user interface components remains underspecified. While generalized recommen-

dations are lacking, anecdotal references can be used to gather some ideas. The previously

mentioned IntelliSense is one such example, focusing on inline interactions by integrating

suggestions directly into the code editor of Visual Studio Code. Similarly, documentation

is provided directly underneath the active line, right in the user’s zone of attention. Tools

interacting with code might want to use similar concepts, as they prove extremely efficient

in practice.

Figure 3.3: An example of GitLens in Visual Studio Code. The extension is based on
CodeLens and embeds interactive information into the editor context.

Microsoft’s CodeLens1 is another example of contextual interaction found in Visual Stu-

dio Code. Figure 3.3 demonstrates how CodeLens embeds information directly into the

editor without compromising the editor experience itself. Clicking on such an annotation

reveals additional information. This is a common feature in many IDEs and can be adapted
1https://code.visualstudio.com/blogs/2017/02/12/code-lens-roundup

28

https://code.visualstudio.com/blogs/2017/02/12/code-lens-roundup

3.3 The Ghost Framework

for different use cases, such as displaying versioning information (e.g. GitLens1 or code

metrics (e.g., CodeMetrics2).

However, interfaces do not always require innovative new shapes. Sometimes, a tool is

powerful enough to justify manual interactions. A prime example is IntelliJ ’s search bar

shown in Figure 3.4. By gathering information about the project automatically, this search

bar can provide extremely efficient access to various resources, and can speed up the user’s

process significantly. In turn, it has to be triggered by use of a shortcut. This is a fair

trade-off, as it is hard to predict the user’s intent to search. Nonetheless, designers have

to be aware that introducing shortcuts and hidden menus reduces intuitiveness.

Figure 3.4: An example of IntelliJ ’s powerful search bar.

3.3.4.3 Integration of Front- and Backend

Integrating the front- and backend effectively requires a coordinated design strategy through-

out the tools’ development cycle. Both components have to interact continuously, with the

1https://www.gitkraken.com/gitlens
2https://marketplace.visualstudio.com/items?itemName=kisstkondoros.vscode-codemetrics

29

https://www.gitkraken.com/gitlens
https://marketplace.visualstudio.com/items?itemName=kisstkondoros.vscode-codemetrics

3. CONCEPT

backend serving as a processing engine for the frontend. Consequently, the frontend serves

as a blueprint for the backend design.

Observing the Ghost Framework from the perspective of a conventional client-server ar-

chitecture, the client (frontend) requires a set of features provided by a server (backend).

As a result, the backend’s interface should cater to the frontend requirements. This princi-

ple extends to other system attributes, including performance and stability. The frontend,

being crucial to the user experience, must operate swiftly and reliably. In case of back-

end issues, the frontend should fail gracefully, offering users a clear understanding of any

complications.

Originally, the Ghost Framework was designed for local deployment on the user’s ma-

chine. However, remote backend server deployment is a viable option. In this case, some

backend responsibilities shift to the frontend, particularly in data collection, as the backend

no longer has access to the user’s data. Otherwise, the fundamental framework principles

remain intact.

Finally, it is advised to adopt suitable protocols to facilitate communication between

frontend and backend. Such standardization streamlines communication and improves

maintainability. A fitting example for programming tools is Microsoft’s Language Server

Protocol (LSP)1. Designed for programming-specific client-server interaction, LSP is widely

deployed in tools like Visual Studio Code and Eclipse2. It offers robust features for pro-

gramming tool design, including document synchronization and workspace management.

3.3.5 Limitations

The Ghost Framework is designed for intuitive tools with a high degree of automation.

While it provides numerous guidelines to achieve this goal, several limitations remain.

The following section will cover the most important challenges and pitfalls that should be

avoided when applying the framework in practice.

Performance Overhead While proactive background activity takes a central role in the

framework’s design, it can be resource-intensive. Complex tasks, such as the context

analysis, could degrade the tool’s performance and affect responsiveness of the user’s

system. As a result, performance optimizations are crucial within the framework.

Dynamic resource allocation should be employed to maintain system responsiveness

and background tasks limited to a minimum where possible.
1https://microsoft.github.io/language-server-protocol/
2https://eclipseide.org/

30

https://microsoft.github.io/language-server-protocol/
https://eclipseide.org/

3.3 The Ghost Framework

Data Privacy While transparency and user data control are emphasized, continuous data

collection always raises privacy concerns. To foster trust, the tool has to transpar-

ently communicate which data is collected, and for which purpose. Temporary data

processing might be necessary to extract contextual triggers and suggestions, how-

ever, this data should be deleted afterwards. Recording data permanently should be

reduced to a minimum, and always follow a clear purpose.

False Positives/Negatives Operating partly autonomous, the tool is susceptible to mis-

interpretation of user intent or context. This can result in faulty or lacking sugges-

tions, disrupting the user’s workflow and harming the tool’s value.

As a result, the context analysis required thorough testing, and should employ reliable

heuristics to predict intended operations. This requires a deep insight into the tool’s

user base.

Scalability Directly related to the performance overhead discussed earlier, tool scalability

is at risk. Large projects might overload the system, resulting in a degraded user

experience. This could be amplified if a tool includes collaborative features.

While performance optimizations can improve these issues, tool designers should

consider a desirable project scope early on and take design decisions accordingly.

Thorough testing at the desired scale is recommended.

Compatibility Finally, the Ghost Framework is designed to incorporate with existing

tool platforms and enable interaction with other tools. This introduces crucial de-

pendencies and can result in compatibility issues.

Tool designers should minimize external dependencies as much as possible. However,

existing dependencies are likely to increase maintenance overhead, requiring frequent

updates to accommodate the changing tool environment.

This list is by no means exhaustive. However, it should provide some insights into

problems of the Ghost Framework. More practical issues will be revealed and discussed

during the application of the framework in chapter 4.

31

3. CONCEPT

32

4

Design

To test the Ghost Framework developed in chapter 3, this thesis proposes a prototypical

version control system for creative coding. The following sections describe the tool’s con-

ceptualization and implementation, focusing on practical applications of the framework.

A detailed evaluation of the results is presented in chapter 5.

4.1 The Ghost Editor

The manual, often complex versioning process of many current VCSs is a reoccurring strug-

gle for exploratory and creative programmers. The resulting workflow disruptions can harm

the creative process, and lead to frustration. The Ghost Framework promises to resolve

this issue by automating the versioning process and minimizing manual user interaction.

Analogue to the metaphorical map presented in section 3.2, the tool automatically records

a version history, and offers easy access to the saved information.

A key concern of the Ghost Framework is the intuitive and seamless integration with the

user’s workflow. As such, an integrated solution is proposed that embeds version control

in the conventional process of writing code. Furthermore, the development process is

augmented with supportive features for creative coding to provide a comparable experience

to existing creative coding editors such as the Processing Editor1 and the P5JS Web Editor2

(see Figure 4.1). The final result is called Ghost Editor, referencing the framework’s name.

1https://processing.org/
2https://editor.p5js.org/

33

https://processing.org/
https://editor.p5js.org/

4. DESIGN

Figure 4.1: A screenshot of the Processing Editor (left) and P5JS Web Editor (right).

4.1.1 Core Concepts

The versioning process itself is built upon real-time change tracking. Instead of generating

versions on a manual user prompt (e.g., Git or Subversion1), the Ghost Editor creates

new versions for every code modification automatically. This includes individual character

insertion or deletion. Versions are stored on a per-line basis, compared to conventional

file-based approaches, and every line has its own version history.

During the editing process, each line is treated as an individual unit, and changes are

decomposed into individual line modifications (e.g., when inserting several lines at once,

each inserted line receives its own version). Using the versions’ timestamps, these individual

line histories can be composed into a full file history. By selecting a suitable version for

each line, the full code for any previous state can be reconstructed.

This process is part of the Ghost Framework ’s autonomous backend component, proac-

tively gathering information to provide assistive version control. While its design enables

unsupervised real-time versioning with maximal resolution, it generates a multitude of

meaningless or faulty versions, e.g., unfinished modifications when typing a variable name.

The user interface has to reduce this complexity and offer intuitive user interactions. This

is achieved through multilayer interface design, building on top of Variolite’s UI concept

(2). As shown in Figure 4.2, Variolite conceptualizes an in-line UI for local versioning. This

way, version can be accessed right from within the editor, and are available immediately.

The Ghost Editor expands on this idea in several ways. Most importantly, Variolite

requires manual version creation and management. After selecting a block of code, the

user can create new versions, and switch between them. Our method captures the entire

1https://subversion.apache.org/

34

https://subversion.apache.org/

4.1 The Ghost Editor

Figure 4.2: A screenshot of Variolite, as presented by Kery et al. (2). It displays two nested
inline versioning boxes with several saved versions each.

version history for each line proactively, and can combine these histories for any selection

of lines. As a result, the full version history is available immediately after selecting a block

of code, and users no longer have to fear losing any progress. However, visualizing the

entire history of changes at once might be overwhelming. Consequently, the interface was

decomposed into 5 individual layers:

Layer 0: Hidden Layer Initially, the code editor does not show any versioning-related

interface components. Once the user wants to access the interface, they can select

any code block, and use the right-click context menu to create a so-called “snapshot”

(see Figure 4.3).

Layer 1: Code Highlight After creating a snapshot, the editor highlights the selected

code permanently with a subtle box, as shown in Figure 4.4. This provides a contin-

uous context cue for the user, and clearly indicates affected lines.

Layer 2: Version Interface Clicking into the code highlight for a snapshot unfolds the

versioning interface. As a result, the user is always aware of available versioning

35

4. DESIGN

Figure 4.3: A screenshot of the Ghost Editor, showing the context menu used to create a
snapshot.

Figure 4.4: A screenshot of the Ghost Editor, showing the code highlight for a snapshot.

36

4.1 The Ghost Editor

Figure 4.5: A screenshot of the Ghost Editor, showing the version interface. The green
button will save the current state, while the blue slider allows the user to scrub through all
past versions of the selected code block.

functionality when editing this code block. Figure 4.5 highlights the two operations

accessible from this interface: The green “+” button saves the current version for

faster accessibility, while the blue slider, a version timeline, allows scrubbing through

every previous version of the code block.

Layer 3: Version View The version view opens next to the editor whenever the user

saves a new version, and displays all manually recorded versions of the current

code block. Versions are presented with a visual preview of their result and an AI-

generated name and description (see Figure 4.6). The generated metadata transforms

saving a version into a one-click operation and can be adjusted later. This enables

creatives to save versions faster, encouraging experimentation with new ideas.

Layer 4: Version Editor Finally, a user can select versions in the version view to edit

them in isolation. This can be helpful for quickly testing an idea in another version,

without modifying the entire project. The goal is to enable faster iteration safely.

Modified versions can also be copied into the main editor, or duplicated for further

experimentation. The interface is explained in more detail in Figure 4.7. It is worth

37

4. DESIGN

Figure 4.6: A screenshot of the Ghost Editor, showing the version view used to compare
versions. Each version has an AI-generated name and description.

Figure 4.7: A screenshot of the Ghost Editor, showing the version editor used to modify
versions independent of the main editor. The yellow button will load the selected version, the
green one duplicates it.

38

4.1 The Ghost Editor

noting that the version editor also supports versioning, and is synchronized with the

overall version history for each line.

This interface is designed to hide the tool’s complexity as long as possible, only reveal-

ing components when they are most useful. Crucially, manual user prompts are minimized

through contextual layer selection. By providing visual triggers based on the editing con-

text, the user is cued when they are most likely to interact with the tool. This should

improve intuitiveness and reduce the entry barrier for new users.

Furthermore, the tool actively assists the user through its use of AI, by autonomously

predicting names and descriptions for versions. This information is equivalent to commit

messages in tools like Git, and crucial for effective communication in the development

process. Nonetheless, these annotations are notoriously neglected by developers due to a

lack of time and motivation (70, 71). This is a prime example of the Ghost Framework ’s

ambition to minimize workflow disruptions and support developers actively.

Concurrently, the only recorded information concerns the project’s version history. This

data can be freely accessed by scrubbing through the version timeline, and is stored locally.

As a result, the user has full control over their data. However, all AI-based features will

result in 3rd-party processing of some recorded version information. This must be clearly

communicated prior to use.

Finally, the Ghost Editor proposes the novel idea of a dedicated version editor. This

feature enables fast experimentation on varying versions, without the need to manually

switch between these versions. The tool automatically integrates the modified code into

the project and provides a real-time preview of the result. This can aid exploratory pro-

cesses significantly, as it massively reduces versioning overhead for temporary experiments

compared to traditional versioning methods (e.g., manual versioning in files, Git).

4.1.2 Auxiliary Creative Coding Concepts

Beyond the core versioning functionality, the Ghost Editor introduces several additional

concepts to improve creative coding in general. These features are partly derived from

existing creative coding editors, in particular the P5JS Web Editor, which is also used

during the evaluation in chapter 5.

Real-Time Preview Many creative coding applications are related to visual artefacts,

including images, videos, and interactive animations. Developers frequently observe

this output to evaluate their current progress. Consequently, most creative coding

39

4. DESIGN

Figure 4.8: A screenshot of the Ghost Editor, showing the expanded colour picker and inline
documentation for the fill function underneath.

editors contain a preview feature, executing the user’s code on a button click. The

P5JS Web Editor also includes an auto-refresh option, updating the preview auto-

matically as soon as the user stops typing. The Ghost Editor develops this idea

further with a real-time preview, refreshing almost instantly.

This preview enables a “what-you-see-is-what-you-get” workflow, allowing users to

reflect on changes immediately. This feature is also used in the editor’s version view,

synchronizing every saved version with changes elsewhere in the project.

Colour Picker When working with visual artefacts, colours are of utmost importance.

However, to many people, digital colour representations like the RGB colour space

are rather unintuitive (72). As a result, the P5JS Web Editor provides various

colour representations, including predefined colour names (e.g., “red”, “lightblue”) and

hex codes. Most importantly, an embedded colour picker enables visual selection of

colours from within the code editor.

This is an exceedingly useful feature, simplifying colour manipulation significantly.

The Ghost Editor includes a similar feature, as shown in Figure 4.8.

Inline Documentation This thesis has frequently praised Microsoft’s IntelliSense as a

prime example of the Ghost Framework. As a result, IntelliSense is embedded in the

40

4.1 The Ghost Editor

Figure 4.9: A screenshot of the Ghost Editor, showing a simple error hint underneath the
error message.

Ghost Editor, providing the same inline documentation and code completion when

editing code. Furthermore, the tool was configured to provide additional documen-

tation related to creative coding.

AI-Based Error Hints Every programmer has to face bugs, and consequently error mes-

sages. However, these messages are frequently confusing and hard to comprehend.

Large language models (LLMs) present themselves as a new opportunity to explore

errors and bugs in the context of the original code (73–75). This can be extremely

beneficial for new users, or professionals from other domains (e.g., artists or design-

ers). To explore this idea, the Ghost Editor includes a feature to automatically

explain errors using OpenAI’s GPT-3.

The results are presented together with the original error, and can clarify cryptic

messages, as shown in Figure 4.9. However, LLMs are by no means perfect, and

validating their output is hard. Therefore, it is possible that provided hints are

(partly) wrong.

This concludes the conceptualization of the Ghost Editor. Its design closely follows the

principles of Intuitive Assistive Automation, predicting and simplifying version manage-

ment through automated change tracking and contextual version access. The multilayered

41

4. DESIGN

user interface scales complexity based on the user’s workflow, and AI-based automation

encourages versioning for a more exploratory process. The technical design and implemen-

tation enabling these concepts in practice is illuminated in the following sections.

4.2 Architecture

The Ghost Editor is designed for a local deployment without remote components. Nonethe-

less, its architecture considers a dedicated front- and backend. The frontend is responsible

for the user experience. This includes file management, code editing, result preview, ver-

sion visualization, context analysis, and data collection. The backend, on the other hand,

is concerned with data processing, version control, and data storage.

Frontend

File Management

Version
Visualization

Result Preview

Code Editing

Data Collection

Context Analysis

Backend

Data Processing

Version Control

Data Storage

File Management

Legend

Variable

Backend

Frontend

Interface

Interactions

Interface

Figure 4.10: Responsibilities as distributed between front- and backend in the Ghost Editor.
The colours indicate suggested responsibilities, according to the Ghost Framework.

42

4.2 Architecture

Figure 4.10 visualizes these responsibilities. The colour coding highlights a mismatch

between the editor’s architecture and the Ghost Framework. While the framework con-

siders data collection and context analysis a backend responsibility, the editor performs

these tasks in the frontend due to technical limitations. The code editor provides an API

required to collect real-time change data and context information unavailable to the back-

end. Consequently, the frontend processes this context information immediately, which

also improves responsiveness. The change data is forwarded to the backend for further

analysis. Depending on the specific architecture, this adjustment may be suitable for other

applications of the Ghost Framework, if increased frontend complexity is acceptable.

Being built on top of Electron1, the front- and backend run in different processes. As a

result, there is no overlapping code between both components. All communication is per-

formed through Electron’s inter-process-communication channels (IPC). The architecture

of the individual components is detailed in the sections below.

4.2.1 Backend Architecture

Fundamentally, the backend operates as a server, providing a version control API to its

client (frontend). Each interaction starts with the creation of a session, which identifies

the client for all subsequent requests. Then, the client can load files for further version-

ing operations. The server loads these files into a database, and manages their history

accordingly. Finally, files can be unloaded, and the session closed to end the interaction.

Figure 4.11 visualizes these interactions in the form of a sequence diagram.

Persisting all versioning information in a database is crucial to ensure reliable and con-

sistent operation across application restarts. The recorded information is strictly related to

version management, and will not leave the user’s system. It can be accessed transparently

through the version interface, which allows access to all recorded versions.

To improve performance, the backend server additionally caches data loaded from the

database in memory during use. This improves access times significantly, and is crucial

to manipulate versions rapidly. In theory, this technique could be applied to writing

operations as well, but due to time limitations this was not implemented. As a result,

large insertion operations can take a few seconds (e.g., when inserting hundreds of lines at

once). The user interface will indicate this by means of a loading animation.

1https://www.electronjs.org/

43

https://www.electronjs.org/

4. DESIGN

Figure 4.11: Sequence diagram of frontend interaction. All backend interaction is reduced
to server requests. Figure 4.12 visualizes internal server interactions.

44

4.2 Architecture

4.2.1.1 Functional Components

Internally, the backend relies on 5 core components: the server, a resource manager, a

query manager, a cache manager, and finally a database client. The server is responsible

for orchestrating any incoming requests, and uses the resource manager to load required

session data. The query manager then sorts all incoming request to avoid merge conflicts

when applying changes to the database. Once a query can be executed, it loads additional

data through the cache manager. Any cached information is returned immediately, while

missing data is loaded by the database client. New data will be cached for future use. If

a query modifies the database directly, it will do so via the database client as well.

The full process is presented in Figure 4.12. As shown, the backend is completely driven

by frontend request. This differs from the framework’s original design, as data collection

and context analysis were integrated into the frontend. Other tools may use the backend

to trigger contextual suggestions.

4.2.1.2 Data Scheme

Throughout its operation, the backend uses a simple data scheme to manage versioning

information (see Figure 4.13). This scheme is designed around line-based versioning, and

treats each line as an individual versioning object with a dedicated version history. The

details of this file representation are explained below.

File In the Ghost Editor, a file can be understood as a container object, used to refer-

ence its individual lines. It provides meta information such as the file path, but all

versioning operations are performed on the lines directly.

Line Each line contains a list of versions, sorted by timestamp. Any user edits are de-

composed in changes on individual lines, and will be added to this version history.

The order of lines within a file is maintained by the order property. This enables

efficient line insertion by choosing the average order value of the pre- and succeeding

lines.

Version A version consists of a timestamp and the full line content. Additionally, some

versions are inactive, for instance when they represent the deletion of a line.

45

4. DESIGN

Figure 4.12: Sequence diagram of a single generic backend operation.

46

4.2 Architecture

1

*

1

*

1

*

1 *

1

*

1

*

*

*

File

filePath String

lines Line[]

blocks Block[]

Block

file File

type String

lines Line[]

tags Tag[]

parent Block

children Block[]

origin Block

clones Block[]

Line

file File

order Float

type String

versions Version[]

blocks Block[]

Version

line Line

type String

timestamp Int

isActive Boolean

content String

Tag

sourceBlock Block

name String

timestamp Int

description String

Figure 4.13: Data scheme for versioning information in the backend.

Beyond the file data itself, this scheme also accounts for local versioning by means of

Blocks. Each block represents a selection of lines, and provides saved versions in the form

of Tags. These tags contain a timestamp, which can be used to reconstruct the correct

version for each individual line. As a result, tag storage is extremely efficient. In the user

interface, blocks are equivalent to snapshots, and tags represent saved versions. The slider

of the version interface is used to iterate through all timestamps fluently, offering access

to every past state of a snapshot.

A final technicality concerns inserted and deleted lines. They are treated identical to

other lines, however, their history starts and ends with an inactive version respectively.

When an inactive version is selected by the user, these lines will provide no content to the

assembled code, and thus visually disappear in the editor. They can be accessed again by

selecting another version.

4.2.2 Frontend Architecture

Throughout the sequence diagrams in Figure 4.11 and 4.12, the frontend is depicted as a

single unit, responsible for user interface, context analysis, data collection, and backend

communication. In reality, these tasks are spread across numerous components, as shown

47

4. DESIGN

in Figure 4.14. Roughly, each interface layer is implemented by a single component. For

the sake of complexity, the hidden layer is divided into two separate components, while

the interface manager and snapshots are primarily responsible for the context analysis.

Finally, the Ghost editor and the snapshot manager operate layer-independent, as they

provide functionality across all layers. Each individual component will be described in

more detail below.

Ghost Editor

track interactions

track interactions

Interaction
Manager

provides version data provides context

provides context
Snapshot

Preview

provides version data and displays

Version View
provides code

Code Editor
triggers

Version Interfacecreates new instance

Version Editor

displays displays displays

managesSnapshot
Manager

triggers

Code Highlight

Legend

Layer 3: Version View

Layer 1: Code Highlight

Layer 0: Hidden Layer

Layer 2: Version Interface

Relations

Layer 4: Version Editor

Context Analysis

Layer-Independent

Figure 4.14: Frontend components and their relation, coloured according to their respective
interface layers.

Ghost Editor The Ghost editor manages all other frontend components and loads the

user interface on application startup. It serves as a central access point for informa-

tion across components, and integrates with the interaction and snapshot managers.

Interaction Manager The context analysis is divided across several components. How-

ever, the interaction manager collects contextual events from different various sources

and uniformly forwards them to the respective components for execution. This in-

cludes editing events, and snapshot interaction.

Snapshot Manager Whenever the user creates a snapshot, the snapshot manager takes

over control. It synchronizes snapshots with the backend and forwards any interac-

tions to the interaction manager, if necessary. The manager also provides snapshot

access to all other components.

48

4.2 Architecture

Snapshot A snapshot represents a local selection of code that is under version control.

Each snapshot contains information about its position, the contained code, and cre-

ated versions. This component interacts with the backend to create new versions

and access existing ones, while it forwards any user interaction to the interaction

manager.

Code Editor The code editor is the core editing tool of the Ghost Editor. It allows the

modification of code, and provides various support features, including code comple-

tion, inline documentation, and a colour picker. Any code changes are relayed to the

interaction manager. Furthermore, the editor provides an interface to embed inline

UI elements.

Preview The preview is integrated with the code editor and renders the code in real-time.

Any changes are applied almost instantly.

Code Highlight Each snapshot is visualized with a green box inside the code editor,

using its inline UI feature. Whenever the user clicks into the code highlight, the

version interface is loaded as well.

Version Interface The version interface is an extension of the code highlight and allows

the user to save and access past versions. When saving a version, it also enables the

version view.

Version View Saved versions for a snapshot can be viewed in the version view. It presents

a list of all versions, including a small preview, and the version name. Clicking on a

version opens the version editor.

Version Editor The version editor can be used to modify versions without loading them

first. It instantiates a new Ghost editor, and recursively loads all other components

as well. As a result, the snapshot feature is available in the version editor as well.

For the most part, each component implements a different layer of the multilayer interface

design proposed in subsection 4.1.1. The Ghost editor integrates all of these components

into a complete frontend. Each component has full access to the backend, and can perform

versioning operations independently.

49

4. DESIGN

4.2.3 Interface Architecture

Electron’s IPC-based communication dictates an asynchronous, event-driven interface be-

tween the front- and backend. As a result, an event handler in the backend translates

frontend requests into function calls. The backend’s response is transmitted via a corre-

sponding answering event.

This interface could easily be adapted to any other communication protocol, such as

HTTP. In this case, the events can be converted into HTTP requests, enabling a full

client-server architecture. Being built on top of web technology already, this also means

the editor could be converted into a conventional web app accessible through the browser.

Furthermore, the editor could be transformed into a multi-client system with collaborative

features, if desired.

4.3 Implementation

Originally, the Ghost Editor was designed as a plugin for Visual Studio Code. This would

have enabled full project management, colour themes, plugin compatibility, and many

other benefits that come with a mature code editor. However, the required plugin API

lacks flexibility in terms of UI design, and caused the project to pivot. Instead, the editor

is built on top of the Monaco Editor1, Microsoft’s open-source web-based code editor that

also powers Visual Studio Code.

The Monaco Editor provides a fully featured code editor that easily integrates into any

web application. It provides syntax highlighting, code completion through IntelliSense,

inline documentation, efficient code search, and many other features to improve the editing

experience. However, compared with Visual Studio Code, it is fully customizable and

flexible enough for the requirements of the Ghost Editor.

Being a web-based component, the Monaco Editor has to run in a browser-like environ-

ment. However, most modern browsers only provide limit file management capabilities due

to security concerns. As a result, the Ghost Editor was built on top of Electron, enabling

the design of a native cross-platform web application with full file system access and the

versatility of modern web development.

The editor is written in Typescript2 to benefit from a strong type system, and leverages

the vast ecosystem of Node.js to integrate various dependencies. The front- and backend

use independent code bases, though they share the same technology stack.
1https://microsoft.github.io/monaco-editor/
2https://www.typescriptlang.org/

50

https://microsoft.github.io/monaco-editor/
https://www.typescriptlang.org/

4.4 Limitations

To enable local deployment, the backend uses a SQLite database1, and accesses data

through Prisma2, a modern object-relational mapper (ORM) designed for tight integration

with Typescript ’s type system.

The frontend mostly uses custom Typescript code to generate UI components. The

Monaco Editor additionally provides an API to embed UI into the editor itself, which

is used for the inline UI components. Unfortunately, this strategy failed to scale with

the project’s ambitions, which led to a partial integration of React3 components for some

functionality, such as loading animations and the real-time preview.

The build pipeline for the Ghost Editor is based on Electron Forge4, a first-party pack-

aging tool for Election, and Webpack. This setup allows for a versatile build process with

native support for all major operating systems, including Windows, macOS, and Linux.

Both Windows and macOS have been tested and are verified to work seamlessly.

The project was developed using Git, and the final code is available on GitHub5.

4.4 Limitations

The final editor runs mostly stable, with only few known bugs and no notable crashes

throughout the evaluation phase. Performance is good, even on older hardware6, with

most operations completing instantly and a smooth editing experience overall. While

these observations are a testament to the editor’s functional design, it is not without fault.

The most important limitations are discussed below:

Interface Complexity While the user interface of the Ghost Editor is designed for intu-

itive, fluent interactions, it provides a variety of novel concepts that might be foreign

to new users. In particular, experienced users of external versioning tools like Git

might find the direct integration into the code editor distracting, and the intent of

contextual suggestions could be misunderstood. In particular, the large amount of

intermediary versions accessible via the timeline can be overwhelming.

Additionally, the Ghost Editor requires an explorative mindset to be most effective.

It is designed to value the development process as a whole, instead of the final result.

1https://www.sqlite.org/
2https://www.prisma.io/
3https://react.dev/
4https://www.electronforge.io/
5https://github.com/Xantocx/ghost-editor
6Tested on an Intel Core i7-7500U mobile CPU with 16 GB of RAM from 2017.

51

https://www.sqlite.org/
https://www.prisma.io/
https://react.dev/
https://www.electronforge.io/
https://github.com/Xantocx/ghost-editor

4. DESIGN

Users only interested in the latest version of their code might struggle to see the

editor’s value.

Scalability Throughout the evaluation phase, the editor performed well in small-scale

projects. However, its lack of advanced file and project management is likely to affect

scalability. While these issues can easily be addressed in the future, the fundamental

versioning system might require significant modification to account for project-wide

versioning. As of now, the editor does not support multi-file projects.

Compatibility While the Ghost Framework specifically encourages the use of an extension-

based development environment, in its current form, the Ghost Editor does not sup-

port plugins or extensions without significant development efforts. In hindsight, a

modified user interface design could have allowed for a Visual Studio Code integra-

tion, eliminating this issue. In its current state, developers are limited to the provided

feature set.

Storage Overhead Most modern VCSs use some form of delta-based data format to store

changes (76). The Ghost Editor record the full line content for every new line version.

In combination with real-time versioning, this generates an enormous amount of

version data, increasing storage usage significantly compared to established tools like

Git. The was no issue during our small-scale tests, however, this could change when

using the editor for extended periods of time.

Performance Overhead While the editor’s performance is mostly acceptable, the cur-

rent design includes some specific weaknesses. In particular, the decomposition of

complex change operations into line-based versions and the subsequent database op-

erations can be expensive, taking up to a few seconds. Similarly, AI-based tasks take

an unpredictable amount of time, usually a few seconds as well.

The interface hides these issues behind a loading screen, but long loading times can

lead to user frustration. Modifications to the current architecture could enable back-

ground processing for such operations, providing a more responsive user experience.

Most of these issues are related to the conceptual design of the editor, rather than

its implementation. However, with some additional work, they could be resolved, e.g.,

by providing a built-in tutorial and tool tips to improve the user’s understanding of the

interface.

Naturally, this list is not exhaustive. A more practical evaluation will follow in chapter 5,

involving real user feedback.

52

5

Evaluation

This chapter is concerned with the practical evaluation of the Ghost Editor compared to

existing tools for creative coding by means of a hybrid user study. As part of this study,

participants are requested to perform a basic creative coding task in an established creative

coding editor and the Ghost Editor. Each task is followed by a short, semi-structured

interview about the participant’s personal experience with the respective editor. Both, the

task execution and interview are recorded. Finally, the participants fill out a standardized

form, quantifying their observations for statistic comparison. The goal of this study is to

understand if and how the Ghost Editor can improve the established process for creative

coding and, in particular, versioning.

Testing a code editor is a time-consuming task, particularly if the participants are not yet

familiar with (creative) coding. As a result, the selected programming assignments are very

small and focus on emulating the creative process as well as possible. This also explains

the hybrid data collection approach: While quantitative data is optimal for visualizing

general tendencies and preferences, it is nearly impossible for participants to express the

fine subtleties of their experience after such a brief testing period quantitatively. The goal

of the interview is to uncover some of these insights through dynamic follow-up questions.

The study is designed as a comparative scenario to give inexperienced users the chance to

understand current challenges of creative coding before evaluating the proposed solution.

The specific details of this scenario are discussed in the section below.

5.1 Study Execution

For the study experiment, the P5JS Web Editor was selected as an established to establish

a baseline experience. Created by the designers of P5JS, it is powered by the same creative

53

5. EVALUATION

coding library as the Ghost Editor, eliminating language-specific difference as a potential

source of bias. Furthermore, the P5JS Web Editor served as a design blueprint for the

Ghost Editor, making it a suitable reference for comparison.

Participants are interviewed individually by a single interviewer, either in person or

via Zoom1. The interviewer introduces the environmental conditions of the study, and

prepares the tasks for the participant. Each task follows the same process, beginning with

a short introduction to the given editor and the P5JS library. Next, the interviewer guides

the participant through their task and conclude with a short interview on their editing

experience. This process is recorded. After the recording has ended, the participant is

finally asked to fill out a set of survey questions on the used editor. This process is then

repeated for the second editor, and finalized with a set of additional questions specific to

the Ghost Editor ’s expanded feature set (e.g., the integrated VCS).

Both tasks follow a similar structure, however, differ in content. For the first editor, the

participant is requested to draw a simple house, followed by several modifications (e.g.,

adding a door, changing the daytime). In particular, some of these modifications require

the reconstruction of previous versions. This should simulate the exploratory process of

creative practitioners; testing out different ideas and returning to old versions repeatedly.

For the second editor, this process is repeated, changing the subject to a car.

Throughout their coding session, participants can ask the interviewer for advice con-

cerning the coding itself. This includes information about P5JS, and conceptual questions

about their drawing. This is done to simplify programming, as the P5JS library is not the

intended subject of this study.

5.2 Participants

To ensure a general alignment of interest, the population of participants is limited to

creative practitioners and programmers interested in programming as a creative tool. Both

parties have a basic understanding of the domain, and are likely to engage in creative coding

naturally. Unfortunately, the time-frame of this thesis necessitates previous programming

experience, eliminating creatives engaging in programming for the first time.

Given these constraints, the most appropriate source of interviewees are the computer

science degrees at the Vrije Universiteit Amsterdam (VU Amsterdam), and make up the

largest portion of participants. In total, 8 participants contributed to this study, all of

1https://zoom.us/

54

https://zoom.us/

5.3 Collected Data

which had previous experience in computer science and programming, mostly through

academic education. Unfortunately, no creative practitioners contributed.

All participants were briefed on the usage of their data in the context of this thesis,

as well as future research projects. They consented to these use cases. Additionally, the

study passed the self-check on ethical research design by the Ethics review committee of

the Faculty of Science (BETHCIE) at the VU Amsterdam.

5.3 Collected Data

This study collects different types of data, ranging from well-structured survey questions to

semi-structured interview recordings. For the purpose of reproducibility, the full catalogue

of survey question can be found in Appendix A, together with a list of basic questions used

to initiate interviews in Appendix B.

Both survey and interview questions are designed to reveal the participant’s experience

between the two editors. The goal is to identify specific differences and their impact on

the overall usability. Versioning is an important factor, trying to understand the benefits

and disadvantages of the novel versioning system proposed in this thesis. A full segment

of questions is dedicated to this topic. The full survey responses1 and interviews2 are

available online.

5.4 Evaluation Process

Due to the hybrid nature of data in this study, the survey responses are considered iso-

lated from the interviews. This also ensures anonymity of survey responses. The specific

evaluation processes are detailed below.

5.4.1 Survey Data

Due to the small sample size, the data was evaluated in aggregated form, using the average

and median score as reference for each question. The standard deviation is used to further

investigate the composition of these results. Using these metrics, the participants’ overall

experience with the editors can be quantified.

While the average was used as the guiding measure, the median and standard deviation

serve as a tool to detect internal disagreement. In these cases, the individual responses
1Survey Results: https://docs.google.com/spreadsheets/d/1ZE_l-UF83APa3QueIrqslxoi1Npo6SvP

0MBfWJv8E8M/edit?usp=sharing
2Interview Recordings: https://surfdrive.surf.nl/files/index.php/s/VI9tXqZwslsmHYQ

55

https://docs.google.com/spreadsheets/d/1ZE_l-UF83APa3QueIrqslxoi1Npo6SvP0MBfWJv8E8M/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1ZE_l-UF83APa3QueIrqslxoi1Npo6SvP0MBfWJv8E8M/edit?usp=sharing
https://surfdrive.surf.nl/files/index.php/s/VI9tXqZwslsmHYQ

5. EVALUATION

were reviewed in more detail. Textual responses serve as an additional source of reasoning

when explaining such contradicting experiences.

The survey was split into several related categories (e.g., usability, feature set) and

results analysed within this context. Additional information collected from our interviews

was used to refine the interpretation of the numerical data.

5.4.2 Interviews

The interviews provide deep insights into the participants’ perception of both editors. Using

the survey data for a general sense of direction, interview responses can yield details about

the participants’ experience and reasoning. This information was used to contextualize

numerical observations, and serve as the foundation for a discussion of these results.

While a more structured approach such as Grounded Theory (77) could help to extract

more specific information from these interviews, the given time-frame did not allow the

implementation of such a strategy. However, this may be a valuable addition in a future

continuation of this work.

5.5 Results

This section presents a summary of the collected data, with a deeper discussion in the

context of our research questions following in chapter 6. The data is divided into three,

categories, starting with an evaluation of the participant demographics, followed by an

editor evaluation and a detailed look into the novel versioning system of the Ghost Editor.

All numerical data is extracted from the survey responses where participants rated their

experiences, while qualitative observations are based on the interviews. Some additional

qualitative data were generated by the long-form survey responses.

Many survey questions were rated on a scale from 0 to 10, in which case 0 always refers

to a negative answer, while 10 is the most positive response. For instance, when asking

“How would you rate your coding experience? ”, 0 refers to “I have not programmed before”,

while 10 is equivalent to “I am highly skilled ”.

5.5.1 Participant Demographic

Firstly, the participants are mostly male (7 out of 8), and between 18 and 25 years old (6

out of 8). This is likely a related to the high number of (former) computer science (CS)

students (6 out of 8), a subject notorious for under-representation of women (78). Half

of all participants have completed a Master’s degree, 3 of which in CS, while another 3

56

5.5 Results

completed a CS Bachelor’s degree. Currently, 3 participants are still studying CS, while

the other 5 are working in the industry, again in CS.

Considering their background, it is no surprise that all participants have a good previous

knowledge of CS - specifically programming. 3 participants rated their own experience with

a moderate 6 out of 10, the other 5 responded with a 9 or 10. When asked about their

experience in detail, most participants revealed an affinity to software engineering and full-

stack development. The most notable exceptions are data science and artificial intelligence,

as well as IT-security (one participant each).

None of the participants have a particularly strong background in creative coding, with

5 participants rating their experience as 0. Two participants had heard of the discipline

before (rated 1 or 2), and one participant responded with 6. Any previous experience

was limited to the use of basic creative coding tools (no examples provided) and data

visualization.

5.5.2 Editor Evaluation

Each participant answered an identical set of questions for each editor. The questions are

mostly concerned with the general user experience, the editor’s feature set, performance,

and its learning curve. As the P5JS Web Editor does not have any built-in version control

features, this topic is explored in more detail later (see subsection 5.5.3). The data for

both editors is presented in Table 5.1, and is evaluated below.

5.5.2.1 P5JS Web Editor

In terms of usability, the P5JS Web Editor was rated with an average score of 7.97 out

of 10. The median is 9, indicating an outlier at the lower end. This outlier arose from

participant 7 who consistently rated the P5JS Web Editor worse than all other participants,

sometimes up to 6 points lower than the second-lowest rating. In their textual explanation,

they specifically referred to a lack of features and several bugs other participants did not

experience, even though they were reproducible (e.g., the colour picker overwriting wrong

code, unsafe execution of JavaScript functions that crashed the browser). Excluding their

rating results in a usability score of 8.43 and a median of 9. The individual questions

are rated similarly, with the installation process having a particularly high rating (8.875),

likely because the editor is available as a website.

With an average score of 5.63 and a median of 6, the P5JS Web Editor ’s feature set is the

worst assessed category. Naturally, the absence of version control is a major contributor to

57

5. EVALUATION

Categories & Questions
P5JS Web Editor Ghost Editor
Avg. Median σ Avg. Median σ

Usability

Installation Process 8.875 9 1.64 7.875 8.5 1.89
First Impression 8 8.5 2.56 8.625 9 0.92
Ease of Use 7.25 7.5 2.19 9.5 10 0.76
User Interface 7.75 8.5 2.05 8.5 9 1.07

Overall 7.97 9 2.12 8.625 9 1.31

Feature Set

Completeness 6.125 7 2.30 8.5 8 0.76
Preview 9.375 10 0.92 9 9 0.76
Code Editor 5.375 6.5 3.02 8.875 9 0.99
Error Handling 6 6 1.51 8.125 9 2.30
Version Control 1.25 0 1.75 8.625 10 2.77

Overall 5.625 6 3.26 8.625 9 1.68

Performance

Performance 8.375 8 1.69 9.125 9.5 0.99
Reliability 8.625 9.5 2.39 8.375 8 0.92
Stability 9.25 9.5 0.89 9.5 10 0.76

Overall 8.75 9 1.73 9 9 0.98
Learning Curve 8.5 9 2.33 8.25 8.5 0.89

Overall
Rated 7.25 8 1.83 8.625 8.5 0.744
Computed 7.29 8 2.80 8.68 9 1.34

Table 5.1: Aggregated survey results for both editors. All ratings are provided as average
(Avg.) and median over all participants, together with the respective standard deviation (σ).
Each category has several subcategories, one for each survey question. The last row is split
into Rated and Computed, which refers to the conclusive rating by the participants and the
average result computed from all question ratings, respectively. Values are rounded to two
digits, except if a value only has 3. Better results are marked in green, dark green highlights
summarizing results.

this result, however, the code editor, error handling, and general feature completeness all

scored between 5.3 and 6.2 as well. While the participant assessments of error handling were

approximately unanimous (e.g., lack of meaningful debugging features), there were clear

outliers for the editor and feature completeness. Participant 1 was particularly frustrated

with the minimalistic code completion, while participant 4 noted the lack of proper project

management features (e.g., full file system integration, external tool support). Only the

preview was universally satisfying, with an average score of 9.375 and a median of 10.

In comments throughout our interviews, the lack of a visual coordinate system and the

unpredictable code completion were two additional sources of confusions. Nonetheless,

58

5.5 Results

participant 6 was completely satisfied with the editing experience, rating it a 10 out of 10.

Yet, they would only recommend the editor to experienced programmers for the lack of a

tutorial. All other participants recommended the editor to everyone, with only little prior

experience required.

In terms of performance, there were little complaints, as reflected by the final score of

8.75. All three questions received an average score of at least 8, the median for reliability

and stability is even 9.5. Reliability is affected by a single outlier; participant 7 complained

about several bugs, as mentioned earlier.

The perceived learning curve was rated with an average of 8.5, all participants were

able to quickly adapt to the new environment and created sketches with ease. Part of

this is related to the accessible design of the P5JS library, however, the editor did not

introduce major difficulties. Once again, participant 7 complained about several bugs and

the confusing code completion.

In summary, the participants rated the editing experience with an average of 7.25 and

a median of 8. This is extremely close to the unweighted average of all responses (7.29),

and reflects an overall positive perspective. The editor was deemed useful, even though

limited for larger projects. The lack of version control was a common complaint, as was

the minimalistic approach to code tools, specifically the code completion. Generally, the

editor was recommended for new programmers with some prior experience.

5.5.2.2 Ghost Editor

The Ghost Editor received a significantly better overall rating of 8.625, which again matches

the computed average of 8.68 closely. Across all 3 categories, the Ghost Editor saw generally

improved scores over the P5JS Web Editor. However, there were a few exceptions.

One shortcoming was the setup process. Built as a native Electron application, the edi-

tor requires an installation process. A corresponding installer was distributed and worked

without issues for all participants1. However, this process cannot compete with the sim-

plicity of a conventional web app. Furthermore, the result was affected by participant 5,

who used a prepared device with the editor pre-installed, due to unrelated complications

with their own device. As a result, they could not assess the installation process and rated

it with a neutral 5 out of 10.

For all other usability questions, the Ghost Editor received superior results, with average

scores of 8.625 and above. The relatively low standard deviations of approximately 1 and

1Only Windows systems were tested.

59

5. EVALUATION

below also indicate a general agreement across the participants. Comments gave credit to

an intuitive user interface, the editing experience, and integrated version control.

Feature-wise, the more powerful code editor was considered one of the greatest improve-

ments of the Ghost Editor. The advanced code completion with inline documentation was

positively noted by all participants, and the Monaco Editor was generally regarded as a

modern alternative to the web editor. The lack of file and project management was criti-

cized for both editors, however, the participants considered the overall features set of the

Ghost Editor complete enough for most smaller projects and new programmers.

The AI-based error hints found little use during the limited testing time, but most

participants acknowledged the concept positively. Only participant 5 voiced concerns that

programmers with little prior experience might accept the AI-generated solutions blindly

and lack the knowledge to reflect on potential issues.

The preview was rated with an average of 9 out of 10, slightly worse than for the web

editor. While this result is still exceptional, the increased refresh frequency of the Ghost

Editor produces error messages before the user stops typing. Some participants found this

distracting.

The version control system was generally well received, with an average score of 8.625.

Common concerns were mostly related to the novel user interface, which requires some

experience for effective use. The greatest outlier is participant 5, with a rating of 2. They

attempted to refactor their code into separate functions, which they felt interfered with

the versioning system. Specifically, they missed the ability to move code together with its

history by using the common copy-and-paste feature.

The other participants found the novel approach to version control intriguing, even

though some participants did not see significant value outside creative coding. In their eyes,

conventional tools like Git are already satisfactory. Additionally, the amount of accessible

versions in a project can become large quickly and was noted to be overwhelming.

Performance was rated very similar to the web editor, with a brief overall improvement

for the Ghost Editor. Reliability received better scores with the P5JS Web Editor (8.625

for the web editor, compared to 8.375 for our editor), but no explicit comments were made

to clarify these ratings.

Finally, the expanded feature set of our editor requires some additional instructions,

resulting in a slightly steeper learning curve. However, all participants agreed that a brief

tutorial would suffice to introduce the advanced user interface. Generally, all participants

would recommend the editor to users with at least some coding experience.

60

5.5 Results

In summary, the Ghost Editor was able to improve on most evaluated points, albeit by

a small margin. Given the generally positive experience participants had with the original

web editor, this is a notable feat. The greatest overall improvement is related to the

improved feature set, as the web editor only provides a very basic experience.

5.5.3 Versioning System Evaluation

To evaluate the novel features of the Ghost Editor, participants answered a number of

additional questions regarding their usage of the versioning system. These questions are

designed around the 4 additional interface layers used to integrate versioning into the

editing experience, and are presented accordingly in Table 5.2.

Components
Usage Frequency Rating

Never Occ. Som. Often Avg. Median σ

Versioning

Layer 1 0 5 3 0 7.875 8.5 1.89
Layer 2 1 6 1 0 5.125 5.5 2.95
Layer 3 0 4 2 2 8.375 8.5 1.30
Layer 4 5 3 0 0 6 5.5 1.93

Error Hints 3 3 0 2 7.125 8 3.31

Table 5.2: Aggregated survey results for unique features of the Ghost Editor. Usage frequency
is presented by the absolute number of participants voting for each option. The winning
category is highlighted in green. The abbreviations Occ. and Som. stand for “occasionally”
and “sometimes”, respectively. All ratings are shown as average (Avg.), median, and with
the respective standard deviation (σ). The different layers refer to the version control user
interface, the error hints to the AI-based debugging suggestions.

5.5.3.1 Layer 1: Code Highlight

The code highlight is the visual component used to interact with versions of a code snip-

pet. Each participant used this feature at least once - some more extensively than oth-

ers. Overall, the highlight was perceived as helpful and unobtrusive by most participants.

Interestingly, participant 4 noted that it actively encouraged them to interact with the

versioning system. On average, the code highlight was rated 7.875, with a median of 8.5.

Participant 1 and 5 were outliers with a rating of 5, commenting on the highlight as slightly

distracting when editing code.

61

5. EVALUATION

5.5.3.2 Layer 2: Version Interface

The version interface allows the user to access previous versions and save new ones. While

all uses used the interface to save versions, the timeline feature was less popular. Most

participants only used it occasionally, with participant 5 ignoring it completely. They did

not see the need to access a version history of this granularity and were satisfied with their

saved versions.

Overall, the opinions on the timeline differed significantly, as indicated by a standard

deviation of almost 3. Participant 8 rated it with 10, claiming they would “love” to use it

as part of their regular workflow. Participant 1 appreciated the concept, but only rated it

3 due to the cumbersome amount of versions accessible. This was concern was raised by

several participants, as it made exploration of meaningful versions through the timeline

much harder. Overall, the feature was rated with an average score of 5.125.

5.5.3.3 Layer 3: Version View

The version view got the best average rating of all features, with an average of 8.375 and a

median of 8.5. The ability to compare versions visually was well-received, along with the

automatic generation of names and descriptions. This simplified exploration of past ideas,

and was used more frequently than any other feature.

5.5.3.4 Layer 4: Version Editor

The least popular feature of the Ghost Editor was the dedicated version editor. 5 out of

8 participants never used this feature, despite being introduced to it. Most participants

voiced confusion about its use case, suggesting it might be more relevant in larger projects

or as read-only access to previous versions. Participant 2 and 4 argued that the main

editor would be sufficient for all required edits, and an additional editor would introduce

unnecessary complexity to the user interface. Overall, the feature was rated with an average

score 6 out of 10.

5.5.3.5 Error Hints

Another novel feature of the Ghost Editor are AI-based error hints. However, due to the

trivial nature of our survey tasks, few participants found the opportunity to engage with

this feature. Nonetheless, most participants showed interest in the concept, even suggesting

a feature to automatically apply the suggested fix. However, participant 6 pointed out the

danger of new programmers blindly accepting faulty suggestions. Participant 1 rated the

62

5.5 Results

feature with 0 out of 10, as they encountered a bug that prevented its use. Overall, the

error hints received an average score of 7.125, with a median of 8.

To conclude, the Ghost Editor was generally well-received and improved over the P5JS

Web Editor, largely due to its more mature code editor and the integrated version control.

The latter presented itself as a powerful tool with real-world use for creative coding. While

the user interface integration has some potential for improvement (e.g., moving versions

with copy-and-paste), the current state of the tool was deemed sufficient for use in real

projects, albeit small ones due to the lack of project management features. Its application

outside of creative coding is less clear, and is considered in more detail during the discussion.

63

5. EVALUATION

64

6

Discussion

The core goal of this thesis is to answer the posed research questions in a satisfactory

manner. The following discussion will attempt to do so based on the results of this research.

We will begin with preliminary considerations that affect the following conclusions, then the

questions are addressed in sequential order. The chapter concludes with some additional

deliberations beyond the scope of these questions.

6.1 Preliminary Considerations

As many of the presented results are based on a user study, we have to consider the influence

of participant demographics, as well as the general study design. The section presents the

most important factors that may taint the following discussion.

6.1.1 Participant Bias

While we discuss topics at the intersection of arts and computer science (CS), all 8 partic-

ipants have a CS background, mostly related to software engineering. To some degree this

is necessary, as prior programming experience was required. However, conventional CS,

and software engineering in particular, are, in many cases, requirement-driven disciplines.

Consequently, some participants might struggle to appreciate the exploratory challenges

of creative coding.

The evaluation tasks also suggested this discrepancy in practice, with most participants

only fulfilling the minimum requirements for a given challenge, before awaiting further

instructions. In contrast, the only data scientist in the study started experimenting on

their own, without a need for clear guidance. This could be a testament to the exploratory

65

6. DISCUSSION

nature of their daily work. While these observations are not statistically significant, they

reveal a general tendency.

As a result, tools designed specifically for exploration might receive less attention, which

could bias the final results. Additionally, all participants are already experienced with

sophisticated programming tools, and likely to expect a higher standard than a novice

would.

Finally, most participants were recruited in their role as students as the Vrije Universiteit

Amsterdam. The relation to the author’s own studies at this university could affect the

final results. Similarly, the impact of participant demographics (1 female and 7 male, age

between 18-30) has to be considered.

6.1.2 Study Design

Unfortunately, testing programming tools is a time-intensive task. Due to time constraints

and limited availability of participants, our study used a limited testing approach based on

two simple programming tasks. However, these tasks are rather simple, and easily solved

by an experienced programmer. Hence, the participants might not require advanced tools

such a VCS as much as they would under different circumstances. This could affect their

assessment of its validity.

Furthermore, the order of these tasks might affect their evaluation. During the survey,

participants start by testing the P5JS Web Editor. Participants that have no experience

with P5JS prior to this study will this be more comfortable with the library when testing

the Ghost Editor, and might perceive the editor as more intuitive. A randomized design

could have prevented that, however, the goal was to provide participants with an unbiased

perception of the current state of creative coding tools before presenting our alternative

approach.

6.2 RQ1: Exploration in Creative Tool Design

A key goal of the Ghost Framework is to design programming tools that can contribute

to exploratory and creative processes effectively. Naturally, this is a very wide topic with

many potential solutions. To narrow down the scope of this thesis, the issue is approached

through two sub-questions discussed in the sections below.

66

6.2 RQ1: Exploration in Creative Tool Design

6.2.1 RQ1-1: Exploration through Interface Design

For this thesis, the design of programming tools for exploration was framed as an interface

problem. This perspective is based on the hypothesis that much of the functionality needed

for exploratory programming already exists in other tools like Git. However, the user

experience of these tools is optimized for a linear development process and is incompatible

with exploration.

The Ghost Framework attempts to resolve this problem through intuitive assistive au-

tomation; tools that anticipate the user’s actions and proactively produce solutions. This

concept is founded in the observation that creative coding and similar tasks rely on a form

of structured chaos to explore an unknown solution space effectively. Often, creative prac-

titioners create a multitude of different versions and jump between ideas with no obvious

pattern. This can create confusion in the documentation of their results (e.g., the famous

“spagetti code” (79)). Tools that autonomously bring order into this chaotic environment

without disrupting the existing workflow can be exceedingly valuable.

Version control is a natural topic to test this theory with, as it is fundamentally con-

cerned with structuring and documenting program code efficiently. Additionally, conven-

tional VCSs are often criticized for their bulky interfaces, (34, 35) and many exploratory

programmers refuse to use them at all (1). Multilayer interface design serves as a good

starting point to explore alternative solutions, and the Ghost Editor delivers the first ob-

servational data on this theory.

The user study revealed a general liking of our novel versioning approach, however,

responses varied greatly between participants. While all of them acknowledged the advan-

tages of comparing versions visually and streamlining version creations through automatic

name generation, several participants stated they would rather return to conventional ver-

sion control systems like Git for two main reasons:

Bloated Version History While the idea of a complete editing timeline seems intuitive

at first, our implementation includes all previous versions with no way to filter for

specific qualities (e.g., only versions that run without error). This makes history

navigation hard, and resulted in frustration for several participants. Consequently,

this feature was mostly neglected, and even posed a visual distraction when editing

code. Hiding this feature in another interface layer and enabling some form of version

selection might be a possible solution.

67

6. DISCUSSION

Little Added Value With access to the full version history being neglected, our ver-

sioning system essentially transforms into a conventional VCS with an inline user

interface. The user can manually save versions, and access them from a separate

interface. While the side-by-side version view is useful to compare different ideas,

two participants claimed they would rather use Git for non-creative applications due

to their advanced experience.

This raises concerns about the effectiveness of the proposed Ghost Framework. After all,

tools are supposed to aid the user and simplify complex workflows seamlessly. By adding

unused functionality, tools becomes increasingly complex without improving efficiency.

Luckily, these concerns did not apply to the general user interface concept. The inline

interactions improved the versioning efficiency for most participants, and 3 participants

specifically noted that it encouraged them to create versions more frequently. The AI-based

generation of version names was seen as a major improvement over existing tools, as the

selection of meaningful version descriptions can be tedious and discouraging. Additionally,

the code highlight served as a constant reminder to actively interact with versions for at

least one participant.

While several participants argued the novel interface requires some initial explanation,

they all agreed it can be learned easily, and integrates naturally into the coding process.

As a result, the Ghost Editor actively encourages exploration, and enables effective version

comparison through its version view. In the context of creative coding, all participants

agreed on its superior functionality compared to conventional VCS interfaces like Git.

Beyond creative coding, the aforementioned complaints remain a valid hurdle, especially

as visual side-by-side comparison is unique to creative applications and less beneficial in

traditional programming tasks. Nonetheless, several participants agreed on the potential

of saving versions automatically. However, this should be done more selectively, e.g., by

analysing the saved version history and extracting meaningful versions through heuristics.

In that sense, the Ghost Editor arguably emphasized automation too little, leaving the

user with a large, unstructured version history to manage manually. However, the general

concept of intuitive assistive automation seems to be aligned with the goal of improving

the user’s workflow seamlessly. In our case, all participants agreed that our editor is more

efficient for creative coding than existing solutions, and half of them would use it beyond

creative coding. This indicates a clear value, even when comparing the Ghost Editor to

existing VCSs.

68

6.2 RQ1: Exploration in Creative Tool Design

Naturally, it is hard to generalize these results due to the limited sample size and scope,

however, they suggest that the Ghost Framework achieves its goal of encouraging ex-

ploratory behaviour in tools. Obviously, the real-world impact depends on environmental

conditions, as certain tool types are more suitable to aid exploration than others. Nonethe-

less, our results are promising and serve as a starting point for additional research into

exploratory tool design.

In the future, the framework should be tested in various domains to understand its

value in a broader sense. Additionally, the Ghost Editor can serve as continued study to

improve the framework by expanding it based on user feedback and evolving the framework

accordingly.

6.2.2 RQ1-2: Reflection through Tools

Exploration requires an intuitive understanding of a given solution space. Such an under-

standing can be built through reflection on past experiments, which requires a practitioner

to frequently revisit previous solutions and actively engage with them. However, most

conventional tools are designed for a forward-looking linear programming process, and do

not encourage this type of re-iteration. The Ghost Framework can serve as the foundation

for alternative approaches.

Similar to the map analogy presented in section 3.2, the framework encourages the au-

tomatic curation of past ideas for effective re-iteration. Naturally, a VCS is the most

suitable tool type to test this idea, and the Ghost Editor serves as an experimental ap-

proach. Specifically, the editor provides access to the precise editing history, and can replay

it using the timeline slider. Manually curated versions are presented in the version view.

During our evaluation of the editor, the timeline feature did not receive overly positive

feedback. Instead, it was deemed hard to navigate. However, all participants 8 claimed

that the manual version view was a helpful overview of past work, and contributed to the

understanding of previous ideas. The visual comparison made it easy to spot differences,

and trace the evolution of the project. 3 participants specifically noted the benefits of local

versioning, allowing for a more specific look at the past project trajectory.

Naturally, the small scale of the evaluation task makes it hard to fully comprehend the

reflective value of our editor in the long-term. However, compared to existing tools, it

provides a more efficient way to reconsider and compare old versions visually.

Relating these observations back to the Ghost Framework, it is hard to say whether it has

a positive effect. While the timeline is more representative of the framework’s concept, it

did not contribute to reflective behaviour in a meaningful way. At the same time, this may

69

6. DISCUSSION

be related to similar weaknesses discussed in subsection 6.2.1, namely the overly exhaustive

version history. An improved filtering system might also improve its value.

Concurrently, such a detailed history provides an excellent foundation for further anal-

ysis. For instance, the history could be used to extract particularly volatile segments of

code, reoccurring sources of errors, and other metrics to improve the user’s understanding

of their own process. Providing this data in a contextual way might help users to avoid

common mistakes.

To conclude, the current state of the Ghost Editor does not provide conclusive evidence

towards the Ghost Framework ’s value for process reflection. Presently, our editor fails

to leverage the full potential of IAA and the testing scope is insufficient for evaluation.

While there is some potential for meaningful improvements, additional work is required

to evidently demonstrate this vision. A recommended starting point is the filtering of

versions, as well as the addition of further analysis based on the full version history.

Overall, this thesis succeeded in proposing a tool design framework for creative and

exploratory tasks. This framework can support efficient solution space exploration, and

holds promise for process reflection and documentation. The Ghost Editor serves as a com-

mendable first implementation, but reveals several weaknesses in its dedication to intuitive

automation. The collected versioning information serves as a promising foundation for

future analysis, however, the editor falls short in exploiting of this data. Whether this is

a structural issue with the framework itself or implementation-specific is hard to evaluate

on the basis of a single example. Yet, we believe that the evidence at hand justifies further

exploration of the presented ideas. Both, the construction of further tools based on the

proposed framework and the evolution of the Ghost Editor itself can yield valuable insights

to fully understand the impact of the suggested ideas.

6.3 RQ2: Exploration and Reflection in Version Control

While the first research question discusses the integration of exploratory and reflective pro-

cesses into tool design in general, RQ2 targets VCSs specifically. The goal is to understand

how VCSs can aid creative practitioners more efficiently, compared to existing tools like

Git.

The version control system proposed in this thesis is based on the idea of automation.

Instead of requiring manual interaction, our system records every change automatically.

To use this information as versatile as possible, each line is treated as an individual object

70

6.4 RQ3: Improvement over Existing Tools

with its own version history, enabling efficient local versioning for any code segment. In

theory, this approach provides full flexibility and does not require manual user interaction.

However, in its current state, the Ghost Editor is not able to translate the promise of this

system into practical value. As discussed in section 6.2, the overly precise version history

resulted in frustration during testing, and the theoretical advantages of this method remain

unrealized, for both exploration and reflection.

Nonetheless, there are two indications that the fundamental concept is worth further

exploration. Firstly, 4 out of 8 participants stated interest in using a modified version

of this system on a daily basis. In particular, they requested filtering options to reduce

the amount of versions accessible through the timeline based on sensible criteria (e.g.,

no crashing versions). Secondly, the idea of saving versions with less user interactions is

welcome to all 8 participants. Each participant mentioned the automatic generation of

version names as a major advantage of the proposed system, as it reduces the barrier to

create a new version.

Combining both observations, a future iteration of the Ghost Editor should focus on

extracting meaningful versions automatically (e.g., by using heuristics and metrics of mod-

ification frequency), and simplify access to these versions by means of a more efficient

timeline. Doing so enables users to fully focus on writing code, without having to fear the

loss of valuable ideas. In line with the Ghost Framework, they should retain full control,

being able to overwrite the system’s suggestions whenever needed.

In its current state, the system still provides significant exploratory value for creative

coding, however, it falls short for other applications. At least 2 participants specifically

mentioned that they would prefer Git when dealing with more traditional programming

tasks.

In summary, we were unable to verify the validity of real-time versioning for exploration

and reflection based on the Ghost Editor. However, we found evidence for its potential

benefits, and suggest a further exploration of this topic.

6.4 RQ3: Improvement over Existing Tools

Finally, the last research question addresses the direct comparison with existing tools

designed for creative coding, specifically the P5JS Web Editor. In this regard, the survey

results in Table 5.1 provide a clear conclusion: The Ghost Editor improves upon the web

editor in 10 out of 13 evaluated categories.

71

6. DISCUSSION

The general verdict of the participants concluded that the Ghost Editor essentially pro-

vided the same feature set as the web editor, and added some convenience like the Intel-

liSense integration and AI-based code hints. As all of these features aid the development

process and have basically no negative effects, the Ghost Editor should be preferred over

the web editor.

Interestingly, only 2 out of 8 participants noted the version control as a specific reason

for this conclusion, and participant 5 even considered it an optional addition rather than

an integral part of the experience. Consequently, it seems the somewhat limited editing

experience of the web editor was a greater issue during the evaluation tasks than version

control. This is likely due to the simple nature of the performed tasks.

As a result, we cannot conclude whether the exploratory and reflective advantages the

VCS was supposed to introduce had a significant impact on the editing experience. While

the participants did not complain about interferences with their usual workflow, a more

elaborate test setup might be required to understand the exact implications of this novel

versioning system. Such a long-term test should also include creatively experienced partic-

ipants to consider their specific needs in more detail, compared to the current examination

through computer scientists.

6.5 Further Suggestions

Throughout the interviews, participants provided numerous additional suggestions on how

to improve the creative experience of the Ghost Editor. However, these suggestions are

not directly related to the topic of this thesis, and are only discussed briefly below. They

might prove valuable for a future expansion of this project.

Version Quick Select One participant appreciated the ability to switch versions without

leaving the editor, and suggested further simplifying the process through a quick-

access bar next to the real-time preview. Users could use shortcuts to navigate the

latest versions, without interacting with the user interface in the first place. This is a

great idea, as it keeps recent modifications always in sight and accessible, increasing

iteration speed even further.

Selective Version Display Currently, the version previews always display the whole im-

age, even parts that are not selected by a snapshot specifically. A participant sug-

gested creating an additional preview that only shows elements directly affected by

the selected snapshot. This would improve comparability across local versions and

72

6.5 Further Suggestions

help to evolve individual elements of a complex artwork. However, technologically,

it might be challenging to decompose the full project code in a way that is suitable

for such a preview.

Coordinate Visualization Several participants struggled to determine the correct coor-

dinates for elements on the canvas. They suggested different methods to support this

process, including a labelled grid overlay on top of the preview, and the ability to

click on the canvas to select specific coordinates automatically. These solutions would

indeed improve the accessibility to novice programmers, and should be considered

for a future expansion.

Drag & Drop At least 2 participants proposed the idea of a drag & drop system to

position elements on the canvas visually, and generate corresponding code from the

result. While this is a great idea for learning the P5JS library, such a system would

be severely limiting when dealing with animation or sound design. However, it is

worth considering this feature for educational purposes.

73

6. DISCUSSION

74

7

Threats To Validity

While the user study was carefully crafted to generate meaningful insights, there are a

number of potential threats to the result validity. This section discusses them in detail.

The participant demographics of a user study can have a major influence on its outcome.

In the case of this thesis, a high degree of homogeneity could result in one-sided results.

All 8 participants have a background in academic computer science, and 6 are specialized

in software engineering. Furthermore, all 8 are younger than 30, with 6 being younger than

25. Finally, only one participant was female, while the other 7 were male.

As a result, the presented findings might be biased towards a conventional software engi-

neering mindset, which often conflicts with the exploratory processes observed in creative

coding. The lack of experienced creatives in the study could emphasize this even further,

especially as all participants had prior experience with alternative versioning systems.

Furthermore, 5 out of 8 participants are affiliated with the same institution as the re-

searchers conducting the study. This could lead to an unconscious bias towards the re-

searcher’s work. In combination with the small sample size of participants, this may affect

the final conclusions.

The proposed framework was evaluated on the basis of a single practical implementation.

The discussion generalizes these observations, however, future implementations based on

the Ghost Framework might arrive at different conclusions. Similarly, the results of this

study only compare two creative coding editors, not version control in particular. While

several additional questions were posed to evaluate the proposed VCS, comparisons to tools

like Git are based on verbal responses only, instead of direct observations.

75

7. THREATS TO VALIDITY

Additionally, the survey design is limited due to time constraints. While we tried to

cover all important aspects of creative coding editors, the selection might be incomplete.

Concurrently, the depth of participant responses is affected by their short hands-on expe-

rience with both editors. The performed evaluation tasks were rather simple and might

not account for the full spectrum of challenges in creative coding. The choice to evaluate

the P5JS Web Editor first might have introduced further bias, as participants are more

comfortable with the P5JS library when testing the Ghost Editor.

The personal interpretation of the evaluated attributes could pose another challenge

to validity. Participants might have a varying understanding of terms such as usability,

efficiency, and performance. Using these terms in survey questions can lead to inconsis-

tent observations. Similarly, predefined response options or scales might be interpreted

differently across participants.

Finally, the collected results were interpreted in the context of this study. As the evalu-

ation was performed by the designers of the Ghost Editor themselves, the final conclusions

might suffer bias.

76

8

Related Work

While the domain of creative coding, and specifically the context of versioning, remains

underexplored in academic literature, this thesis is not the first attempt at a creative

version control system. In fact, a small but lively body of research has developed around

version control for creative applications, and is continuously evolving. This chapter will

present some of the most important works, and demonstrate how they differ from our

approach.

One of the most comprehensive works on creative version control comes in the form of an

empirical study by Sterman et al. (1). In a series of interviews with 18 creative practitioners

from diverse domains, they established a model of 4 fundamental approaches to creative

versioning, which we introduced in subsection 2.3.2 (see Palette, Freedom, Fidelity, and

Timescale for more details). Based on their findings, this thesis postulates that creative

version control has to resolve a crisis of confidence to boost exploratory behaviour. The

Ghost Editor incorporates this idea into its fundamental design philosophy and serves as

a first confirmation of Sterman et al.’s results.

A more practical approach is presented by Kery et al. (2). They present Variolite,

an exploratory versioning tool, that served as inspiration for our Ghost Editor ’s local

versioning approach with an editor-embedded inline user interface. Variolite allows to

manually record and access versions for any code segment, directly from within the editor

itself. Our approach expands on this idea by proactively capturing all versions for each

line, and dynamically composing a version history for any code segment from that. As a

result, even unsaved version are available. Furthermore, the Ghost Editor is specialized

for creative coding, while Variolite is mainly designed for data scientists.

77

8. RELATED WORK

A creative-first approach to version control is proposed by Burgess et al. (22). Their

“artboard-like” programming environment Stamper embeds programming with a node-

based graph editor. Assets, code snippets, and results are depicted as individual nodes and

the execution flow is determined by visual links. The user can create multiple execution

flows in parallel and visualize their outputs in a unified interface. While parallel version

visualization is also supported by our Ghost Editor, saved versions cannot be modified in

parallel. Additionally, Stamper ’s visual editing process enables the intuitive composition of

new versions from prior code snippets. However, the Ghost Editor provides a rich version

history that enables access to all previous versions. This is impossible in Stamper due to

visual space limitations. Combining both approaches, e.g., by embedding our versioning

system into Stamper ’s nodes, could be an interesting future project.

Instead of tackling creative coding directly, Ginosar et al. (80) suggest an interesting

versioning tool for authoring multi-stage code tutorials. This form of educational code-

writing starts with a simple code snippet that is continuously expanded to full complexity,

often accompanied by explanatory text, to visualize programming concepts effectively.

Their versioning system treats each new version as an individual stage, and is designed to

propagate changes through all stages in a single operation. This can be extremely useful to

creative coders that want to test an idea across several versions in parallel. While the Ghost

Editor does not account for multistaged code in its user interface, our versioning system

tracks each lines as an individual object, enabling the described behaviour by default.

Furthermore, our system provides access to the full change history of each line, not just

the saved versions. Expressing this ability in the user interface directly could improve the

overall user experience for creative practitioners.

Hartmann et al. (81) present a completely different take on versioning. Instead of ad-

dressing temporal version control, e.g., by capturing past versions, they focus on parallel

versioning and the exploration of alternatives. Their proposed tool enables the code-driven

design of user interfaces (e.g., UI defined by code) and comes with a real-time preview. The

user can switch dynamically between different versions of their code and tweak predefined

parameters in a control panel without re-compiling the application. The goal is to simplify

and speed up iterations. This approach differs significantly from our solution, as it is not

concerned with a temporal version history. However, the ability to modify parameters in

a control panel could be extremely useful for creative coders that want to test alternative

configurations visually. A hybrid approach integrating both ideas is worth considering.

78

Finally, GEM-NI is a radically different approach to creative versioning that does not

involve program code directly. Instead, Zaman et al. (82) designed a user interface for

generative design, providing a variety of pre-built features that can composed in a node-

based graph editor. Parameters are defined via a control panel, and the output is presented

in real-time. Based on this editor, GEM-NI then provides a rich version history that

enables parallel version editing and rapid access to alternatives. Most importantly, GEM-

NI provides the ability to merge existing versions into new results quickly. A key advantage

of GEM-NI is the reduced complexity of predefined nodes compared to full source code.

As such, the Ghost Editor can be understood as an attempt to achieve a similar feature set

for programming purposes. Yet, GEM-NI can serve as inspiration on how to expand our

solution, in particular with regard to merging. The ability to compose different versions

together can be extremely powerful to generate new ideas quickly, and is currently missing

from the Ghost Editor.

To conclude, academic literature provides numerous interesting approaches to the prob-

lem of (creative) versioning. Within this vibrant landscape, the Ghost Editor contributes

the idea of real-time versioning in a tightly integrated framework focused on assistive, auto-

mated tooling. While change logs and version tracking exist in other tools, these concepts

often lack integration with the editing process itself, serving as a fallback in case of errors.

Our solution tries to expand on this idea, embedding a rich version history at the heart of

an exploratory process. Yet, our editor can still benefit from other ideas, including version

merging and interactive control panels to further improve usability.

79

8. RELATED WORK

80

9

Conclusion

As creative coding gains momentum in the public conscience, the need for creative support

tools has never been higher. Due to the exploratory nature of creative processes, version

management is particularly essential to increase efficiency and generate better results.

However, the current state of version management in software development is optimized

for linear development cycles, and incompatible with creative requirements. This thesis

attempts to understand the intricacies of creative coding, and translate them into the

design of a novel version control system that embraces the exploratory nature of creative

tasks.

Through in-depth analysis of current literature on the challenges of creative coding, the

problem was framed as an interface design challenge on top of the mature version control

ecosystem for software development. Much of the desired functionality already exists,

however, current version control interfaces limit the parallel access capabilities creatives

need.

Based on this observation, we contribute a framework for exploratory tool design based

on intuitive assistive automation. Instead of creating a passive toolbox, the so-called

Ghost Framework strives for proactive assistance based on behaviour prediction and the

contextual suggestion of solutions. User trust is considered a key to the framework’s

success, as confidence can inspire users to explore innovative ideas without fear.

The framework was used to design the Ghost Editor, a creative code editor with inte-

grated version control. In contrast to existing VCSs, the editor automatically records all

changes and enables local version control for any code segment. The intuitive multilayer

interface design integrates the VCS directly into the editor, and cues relevant interaction

based on the current context.

81

9. CONCLUSION

In a final user study, the editor clearly outperformed a popular alternative for creative

coding. The results evidently supported the principles of intuitive assistive automation

as a way to seamlessly integrate complex interaction into an existing workflow. However,

the VCS design suffered from an overly detailed version history. This hurts its practical

usability, and should be addressed through automatic version prioritization, doubling down

on the assistive nature of the tool.

Beyond this limitation, most participants praised the VCS’s usability in the context of

creative coding. However, a long-term study would be required to determine its value

outside this limited domain.

We believe that the proposed framework provides a solid foundation for the design of

powerful tools that can aid both exploratory and conventional programmers alike. By

taking responsibility off the developer’s shoulders, they can focus on their work freely,

and produce better results. In the context of version control, our initial implementation

provides a guideline for future adoptions of the framework, while also highlighting several

pitfalls and mistakes that should be avoided.

However, the framework only serves as a starting point for exploratory tools, and close

attention must be paid to the specific design to ensure compatibility with creative work-

flows. Additionally, the user study only serves as preliminary evidence for the quality of our

results. Due to several limitations in its design and the participant demographics, further

research is suggested to validate these observations. In particular, this research should be

conducted on alternative tool designs based on our framework to test its generalizability.

In terms of version control for creative coding, the Ghost Editor introduces several

concepts that could benefit creative practitioners. However, to reach its full potential,

several adjustments are recommendable, including version filtering and prioritization.

To conclude, this thesis challenges the traditional notion of version control and pioneers

a new path for exploratory tool design. Our novel framework promises a new generation

of assistive tools, and we hope that our insights contribute to a more vibrant ecosystem of

assistive support tools for all creative minds.

82

Bibliography

[1] Sarah Sterman, Molly Jane Nicholas, and Eric Paulos. Towards Creative Version

Control. Proceedings of the ACM on Human-Computer Interaction, 6(CSCW2):1–25,

2022. doi: 10.1145/3555756. ii, 2, 3, 7, 8, 10, 11, 12, 13, 14, 17, 67, 77

[2] Mary Beth Kery, Amber Horvath, and Brad A Myers. Variolite: Supporting ex-

ploratory programming by data scientists. In CHI, volume 10, pages 3025453–3025626,

2017. v, 8, 13, 17, 34, 35, 77

[3] Ellen Winner. How art works: A psychological exploration. Oxford University Press,

USA, 2019. 1

[4] Kylie Peppler and Yasmin Kafai. Creative coding: Programming for personal expres-

sion. Retrieved August, 30(2008):314, 2005. 1, 8

[5] Beau Sheil. Datamation®: Power tools for programmers. In Charles Rich and

Richard C. Waters, editors, Readings in Artificial Intelligence and Software Engi-

neering, pages 573–580. Morgan Kaufmann, 1986. ISBN 978-0-934613-12-5. doi:

https://doi.org/10.1016/B978-0-934613-12-5.50048-3. URL https://www.scienced

irect.com/science/article/pii/B9780934613125500483. 2

[6] Mary Beth Kery and Brad A Myers. Exploring exploratory programming. In 2017

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC),

pages 25–29. IEEE, 2017. 2, 5, 6, 17

[7] TRG Green. Programming languages as information structures. In Psychology of

programming, pages 117–137. Elsevier, 1990.

[8] Amy J Ko and Brad A Myers. Debugging reinvented: asking and answering why and

why not questions about program behavior. In Proceedings of the 30th international

conference on Software engineering, pages 301–310, 2008. 2

83

https://www.sciencedirect.com/science/article/pii/B9780934613125500483
https://www.sciencedirect.com/science/article/pii/B9780934613125500483

BIBLIOGRAPHY

[9] Maximilian Mayer and Mauricio Verano Merino. Towards version control for creative

coding. Unpublished, 2023. 3, 11, 13, 18

[10] David W Sandberg. Smalltalk and exploratory programming. ACM Sigplan Notices,

23(10):85–92, 1988. 6, 7

[11] Martin Fowler, Jim Highsmith, et al. The agile manifesto. Software development, 9

(8):28–35, 2001. 7

[12] Kent Beck. Embracing change with extreme programming. Computer, 32(10):70–77,

1999. 7

[13] Marcel Taeumel, Patrick Rein, and Robert Hirschfeld. Toward patterns of exploratory

programming practice. Design Thinking Research: Translation, Prototyping, and Mea-

surement, pages 127–150, 2021. 7

[14] Hiroaki Mikami, Daisuke Sakamoto, and Takeo Igarashi. Micro-versioning tool to

support experimentation in exploratory programming. In Proceedings of the 2017

CHI Conference on Human Factors in Computing Systems, pages 6208–6219, 2017. 8,

10, 13, 19

[15] Code Art, pages 3–24. Apress, Berkeley, CA, 2007. ISBN 978-1-4302-0310-0. doi: 10.1

007/978-1-4302-0310-0_1. URL https://doi.org/10.1007/978-1-4302-0310-0_1.

8

[16] Alex McLean and Geraint A Wiggins. Live coding towards computational creativity.

In ICCC, pages 175–179, 2010. 8

[17] Brian Logan and Tim Smithers. Creativity and design as exploration. Modeling

creativity and knowledge-based creative design, pages 139–176, 1993. 8

[18] Deborah K Smith, David B Paradice, and Steven M Smith. Prepare your mind for

creativity. Communications of the ACM, 43(7):110–116, 2000. 8

[19] Rotem Israel-Fishelson and Arnon Hershkovitz. Studying interrelations of computa-

tional thinking and creativity: A scoping review (2011–2020). Computers & Education,

176:104353, 2022. 8

84

https://doi.org/10.1007/978-1-4302-0310-0_1

BIBLIOGRAPHY

[20] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D Patel, Stephen A Edwards, and Ed-

ward A Lee. Predictable programming on a precision timed architecture. In Proceed-

ings of the 2008 international conference on Compilers, architectures and synthesis

for embedded systems, pages 137–146, 2008. 8

[21] William F McColl. Scalability, portability and predictability: The bsp approach to

parallel programming. Future Generation Computer Systems, 12(4):265–272, 1996. 8

[22] Cameron Burgess, Dan Lockton, Maayan Albert, and Daniel Cardoso Llach. Stamper:

An artboard-oriented creative coding environment. In Extended Abstracts of the 2020

CHI Conference on Human Factors in Computing Systems, pages 1–9, 2020. 9, 78

[23] David L Atkins. Version sensitive editing: Change history as a programming tool.

In International Workshop on Software Configuration Management, pages 146–157.

Springer, 1998. 10

[24] E. Carra and F. Pellacini. SceneGit: a practical system for diffing and merging 3D

environments. ACM Transactions on Graphics (TOG), 2019. doi: 10.1145/3355089.33

56550. URL https://dl.acm.org/doi/abs/10.1145/3355089.3356550. Publisher:

dl.acm.org. 10

[25] J. Doboš and A. Steed. 3D revision control framework. Proceedings of the 17th

International Conference on 3D Web Technology, ACM, pages 121–129, 2012. doi:

10.1145/2338714.2338736. URL https://dl.acm.org/doi/abs/10.1145/2338714.2

338736. Publisher: dl.acm.org.

[26] Christian Santoni, Gabriele Salvati, Valentina Tibaldo, and Fabio Pellacini. Lev-

elMerge: Collaborative Game Level Editing by Merging Labeled Graphs. IEEE

Computer Graphics and Applications, 38(4):71–83, July 2018. ISSN 1558-1756. doi:

10.1109/MCG.2018.042731660. Conference Name: IEEE Computer Graphics and

Applications. 10

[27] Sandeep Kaur Kuttal, Anita Sarma, and Gregg Rothermel. History repeats itself more

easily when you log it: Versioning for mashups. In 2011 IEEE symposium on visual

languages and human-centric computing (VL/HCC), pages 69–72. IEEE, 2011. 10

[28] Fabio Zünd, Steven Poulakos, Mubbasir Kapadia, and Robert W. Sumner. Story

Version Control and Graphical Visualization for Collaborative Story Authoring. Pro-

ceedings of the 14th European Conference on Visual Media Production (CVMP 2017),

85

https://dl.acm.org/doi/abs/10.1145/3355089.3356550
https://dl.acm.org/doi/abs/10.1145/2338714.2338736
https://dl.acm.org/doi/abs/10.1145/2338714.2338736

BIBLIOGRAPHY

10:10, 2017. doi: 10.1145/3150165.3150175. URL https://doi.org/10.1145/3150

165.3150175. 10

[29] H. T. Chen, L. Y. Wei, and C. F. Chang. Nonlinear revision control for images. ACM

Transactions on Graphics (TOG), 30(4):105, 2011. doi: 10.1145/2010324.1965000.

URL https://dl.acm.org/doi/abs/10.1145/2010324.1965000?casa_token=WJ1Y

gJS9dWIAAAAA:DZwkkIavyYH5vq1ShwEWwuOoh2XUgv7PqPNp5niZzYCBCnf4_sW70_dM2p

1dovumzyRKaO9zwIA3. Publisher: ACM. 11

[30] S. Baltes, F. Hollerich, and S. Diehl. Round-trip sketches: Supporting the lifecycle of

software development sketches from analog to digital and back. 2017 IEEE Working

Conference . . . , 2017. URL https://ieeexplore.ieee.org/abstract/document/80

91190/. Publisher: ieeexplore.ieee.org. 10

[31] Marc J Rochkind. The source code control system. IEEE transactions on Software

Engineering, (4):364–370, 1975. 10

[32] Nazatul Nurlisa Zolkifli, Amir Ngah, and Aziz Deraman. Version Control System: A

Review. Procedia Computer Science, 135(CSCW2, Article 336):408–415, 2018. ISSN

1877-0509. doi: 10.1016/j.procs.2018.08.191. URL https://doi.org/10.1016/j.pr

ocs.2018.08.191. 11

[33] NB Ruparelia. The history of version control. ACM SIGSOFT Software Engineering

Notes, 35(1):5–9, 2010. ISSN 0163-5948. doi: 10.1145/1668862.1668876. URL

https://dl.acm.org/doi/pdf/10.1145/1668862.1668876?casa_token=eIe5LCq4

7bEAAAAA:PJau_GfyRj1qchCKCgwLrTft_dd71fGL6mpj-NSzjJBIGKKEzDBOwRQb4RAFmh

CPGz9yCcYyn972XQ. Publisher: dl.acm.org Type: PDF. 11, 19

[34] Santiago Perez De Rosso and Daniel Jackson. What’s wrong with git? a conceptual

design analysis. In Proceedings of the 2013 ACM international symposium on New

ideas, new paradigms, and reflections on programming & software, Onward! 2013,

pages 37–52, New York, NY, USA, 2013. Association for Computing Machinery. ISBN

978-1-4503-2472-4. doi: 10.1145/2509578.2509584. URL https://doi.org/10.114

5/2509578.2509584. 11, 67

[35] Santiago Perez De Rosso and Daniel Jackson. Purposes, concepts, misfits, and a

redesign of git. ACM SIGPLAN Notices, 51(10):292–310, 2016. ISSN 0362-1340. doi:

10.1145/3022671.2984018. URL https://doi.org/10.1145/3022671.2984018. 11,

19, 67

86

https://doi.org/10.1145/3150165.3150175
https://doi.org/10.1145/3150165.3150175
https://dl.acm.org/doi/abs/10.1145/2010324.1965000?casa_token=WJ1YgJS9dWIAAAAA:DZwkkIavyYH5vq1ShwEWwuOoh2XUgv7PqPNp5niZzYCBCnf4_sW70_dM2p1dovumzyRKaO9zwIA3
https://dl.acm.org/doi/abs/10.1145/2010324.1965000?casa_token=WJ1YgJS9dWIAAAAA:DZwkkIavyYH5vq1ShwEWwuOoh2XUgv7PqPNp5niZzYCBCnf4_sW70_dM2p1dovumzyRKaO9zwIA3
https://dl.acm.org/doi/abs/10.1145/2010324.1965000?casa_token=WJ1YgJS9dWIAAAAA:DZwkkIavyYH5vq1ShwEWwuOoh2XUgv7PqPNp5niZzYCBCnf4_sW70_dM2p1dovumzyRKaO9zwIA3
https://ieeexplore.ieee.org/abstract/document/8091190/
https://ieeexplore.ieee.org/abstract/document/8091190/
https://doi.org/10.1016/j.procs.2018.08.191
https://doi.org/10.1016/j.procs.2018.08.191
https://dl.acm.org/doi/pdf/10.1145/1668862.1668876?casa_token=eIe5LCq47bEAAAAA:PJau_GfyRj1qchCKCgwLrTft_dd71fGL6mpj-NSzjJBIGKKEzDBOwRQb4RAFmhCPGz9yCcYyn972XQ
https://dl.acm.org/doi/pdf/10.1145/1668862.1668876?casa_token=eIe5LCq47bEAAAAA:PJau_GfyRj1qchCKCgwLrTft_dd71fGL6mpj-NSzjJBIGKKEzDBOwRQb4RAFmhCPGz9yCcYyn972XQ
https://dl.acm.org/doi/pdf/10.1145/1668862.1668876?casa_token=eIe5LCq47bEAAAAA:PJau_GfyRj1qchCKCgwLrTft_dd71fGL6mpj-NSzjJBIGKKEzDBOwRQb4RAFmhCPGz9yCcYyn972XQ
https://doi.org/10.1145/2509578.2509584
https://doi.org/10.1145/2509578.2509584
https://doi.org/10.1145/3022671.2984018

BIBLIOGRAPHY

[36] Hsiang-Ting Chen, Li-Yi Wei, Björn Hartmann, and Maneesh Agrawala. Data-driven

adaptive history for image editing. In Proceedings of the 20th ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games, pages 103–111, 2016. 11

[37] Fabio Calefato, Giovanna Castellano, and Veronica Rossano. Recode: revision control

for digital images. Multimedia Tools and Applications, 78:33169–33188, 2019. 11

[38] David Jones, Aydin Nassehi, Chris Snider, James Gopsill, Peter Rosso, Ric Real,

Mark Goudswaard, and Ben Hicks. Towards integrated version control of virtual and

physical artefacts in new product development: inspirations from software engineering

and the digital twin paradigm. Procedia CIRP, 100:283–288, 2021. 11, 13

[39] Michael Terry and Elizabeth D Mynatt. Recognizing creative needs in user interface

design. In Proceedings of the 4th Conference on Creativity & Cognition, pages 38–44,

2002. 13

[40] Andrés Felipe Gómez, Jean Pierre Charalambos, and Andrés Colubri. Shaderbase:

A processing tool for shaders in computational arts and design. In VISIGRAPP (2:

IVAPP), pages 191–196, 2016. 13

[41] Cynthia J Gormley and Samantha J Gormley. Data hoarding and information clut-

ter: The impact on cost, life span of data, effectiveness, sharing, productivity, and

knowledge management culture. Issues in Information Systems, 13(2):90–95, 2012. 13

[42] Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira Dontcheva, and Takeo Igarashi.

Generating photo manipulation tutorials by demonstration. In ACM SIGGRAPH

2009 papers, pages 1–9. 2009. 13

[43] Jens Lincke, Robert Krahn, Dan Ingalls, Marko Roder, and Robert Hirschfeld. The

lively partsbin–a cloud-based repository for collaborative development of active web

content. In 2012 45th Hawaii International Conference on System Sciences, pages

693–701. IEEE, 2012. 13

[44] Blair Subbaraman and Nadya Peek. p5. fab: Direct control of digital fabrication

machines from a creative coding environment. In Designing Interactive Systems Con-

ference, pages 1148–1161, 2022. 14

[45] Joel Chan and Christian D Schunn. The importance of iteration in creative conceptual

combination. Cognition, 145:104–115, 2015. 17

87

BIBLIOGRAPHY

[46] Alex Doboli and Anurag Umbarkar. The role of precedents in increasing creativity

during iterative design of electronic embedded systems. Design Studies, 35(3):298–326,

2014.

[47] David C Wynn and Claudia M Eckert. Perspectives on iteration in design and devel-

opment. Research in Engineering Design, 28:153–184, 2017. 17

[48] Robert Blumberg and Shaku Atre. The problem with unstructured data. Dm Review,

13(42-49):62, 2003. 19

[49] Carsten Mohs, Jörn Hurtienne, Martin Christof Kindsmüller, Johann Habakuk Israel,

Herbert A Meyer, et al. Iuui–intuitive use of user interfaces: Auf dem weg zu einer

wissenschaftlichen basis für das schlagwort „intuitivität”. MMI-Interaktiv, 11(11):75–

84, 2006. 20

[50] Alethea Blackler and Vesna Popovic. Towards intuitive interaction theory, 2015. 20

[51] Alethea Blackler, Vesna Popovic, and Douglas Mahar. The nature of intuitive use of

products: an experimental approach. Design Studies, 24(6):491–506, 2003.

[52] Dennis C Neale and John M Carroll. The role of metaphors in user interface design.

In Handbook of human-computer interaction, pages 441–462. Elsevier, 1997. 27

[53] John M Carroll, Robert L Mack, and Wendy A Kellogg. Interface metaphors and user

interface design. In Handbook of human-computer interaction, pages 67–85. Elsevier,

1988. 20, 27

[54] Ana Viseu. A multidisciplinary approach to the mutual shaping process in electronic

identities or “we shape the tools and thereafter they shape us” mcluhan. Preprint,

1999. 20

[55] Marie-Hélène Raidl and Todd I Lubart. An empirical study of intuition and creativity.

Imagination, Cognition and Personality, 20(3):217–230, 2001. 20

[56] Emma Policastro. Creative intuition: An integrative review. Creativity Research

Journal, 8(2):99–113, 1995.

[57] Judit Pétervári, Magda Osman, and Joydeep Bhattacharya. The role of intuition in

the generation and evaluation stages of creativity. Frontiers in Psychology, 7:1420,

2016. 20

88

BIBLIOGRAPHY

[58] Deep Ganguli, Danny Hernandez, Liane Lovitt, Amanda Askell, Yuntao Bai, Anna

Chen, Tom Conerly, Nova Dassarma, Dawn Drain, Nelson Elhage, et al. Predictability

and surprise in large generative models. In Proceedings of the 2022 ACM Conference

on Fairness, Accountability, and Transparency, pages 1747–1764, 2022. 23

[59] Jaap-Henk Hoepman. Privacy design strategies. In IFIP International Information

Security Conference, pages 446–459. Springer, 2014. 25

[60] Valentin Zieglmeier and Alexander Pretschner. Trustworthy transparency by design.

arXiv preprint arXiv:2103.10769, 2021. 25

[61] Qinggang Meng and Mark H Lee. Design issues for assistive robotics for the elderly.

Advanced engineering informatics, 20(2):171–186, 2006. 25

[62] Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. The art of

software testing, volume 2. Wiley Online Library, 2004. 26

[63] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge University

Press, 2016. 26

[64] Ben Shneiderman. Creating creativity: user interfaces for supporting innovation. ACM

Transactions on Computer-Human Interaction (TOCHI), 7(1):114–138, 2000. 26

[65] Ben Shneiderman. Creativity support tools. Communications of the ACM, 45(10):

116–120, 2002.

[66] Ben Shneiderman. Creativity support tools: accelerating discovery and innovation.

Communications of the ACM, 50(12):20–32, 2007. 26, 27

[67] Ben Shneiderman. Promoting universal usability with multi-layer interface design.

ACM SIGCAPH Computers and the Physically Handicapped, (73-74):1–8, 2002. 26

[68] Bryan Clark and Jeanna Matthews. Deciding layers: Adaptive composition of layers

in a multi-layer user interface. In Proceedings of 11th International Conference on

Human-Computer Interaction, volume 7, 2005. 26

[69] Aaron Marcus. Metaphor design in user interfaces. ACM SIGDOC Asterisk Journal

of Computer Documentation, 22(2):43–57, 1998. 27

[70] Yingchen Tian, Yuxia Zhang, Klaas-Jan Stol, Lin Jiang, and Hui Liu. What makes

a good commit message? In Proceedings of the 44th International Conference on

Software Engineering, pages 2389–2401, 2022. 39

89

BIBLIOGRAPHY

[71] Mario Linares-Vásquez, Luis Fernando Cortés-Coy, Jairo Aponte, and Denys Poshy-

vanyk. Changescribe: A tool for automatically generating commit messages. In 2015

IEEE/ACM 37th IEEE International Conference on Software Engineering, volume 2,

pages 709–712. IEEE, 2015. 39

[72] Alvy Ray Smith and Eric Ray Lyons. Hwb—a more intuitive hue-based color model.

Journal of graphics tools, 1(1):3–17, 1996. 40

[73] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. Expectation vs. expe-

rience: Evaluating the usability of code generation tools powered by large language

models. In Chi conference on human factors in computing systems extended abstracts,

pages 1–7, 2022. 41

[74] Sungmin Kang, Bei Chen, Shin Yoo, and Jian-Guang Lou. Explainable auto-

mated debugging via large language model-driven scientific debugging. arXiv preprint

arXiv:2304.02195, 2023.

[75] Zachary Englhardt, Richard Li, Dilini Nissanka, Zhihan Zhang, Girish Narayanswamy,

Joseph Breda, Xin Liu, Shwetak Patel, and Vikram Iyer. Exploring and characteriz-

ing large language models for embedded system development and debugging. arXiv

preprint arXiv:2307.03817, 2023. 41

[76] James J Hunt, Kiem-Phong Vo, and Walter F Tichy. An empirical study of delta

algorithms. In International Workshop on Software Configuration Management, pages

49–66. Springer, 1996. 52

[77] Kathy Charmaz. Constructing grounded theory: A practical guide through qualitative

analysis. sage, 2006. 56

[78] Paul De Palma. Why women avoid computer science. Communications of the ACM,

44(6):27–30, 2001. 56

[79] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol. An

empirical study of the impact of two antipatterns, blob and spaghetti code, on pro-

gram comprehension. In 2011 15Th european conference on software maintenance and

reengineering, pages 181–190. IEEE, 2011. 67

[80] Shiry Ginosar, Luis Fernando De Pombo, Maneesh Agrawala, and Bjorn Hartmann.

Authoring multi-stage code examples with editable code histories. In Proceedings of

90

BIBLIOGRAPHY

the 26th annual ACM symposium on User interface software and technology, pages

485–494, 2013. 78

[81] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R Klemmer.

Design as exploration: creating interface alternatives through parallel authoring and

runtime tuning. In Proceedings of the 21st annual ACM symposium on User interface

software and technology, pages 91–100, 2008. 78

[82] Loutfouz Zaman, Wolfgang Stuerzlinger, Christian Neugebauer, Rob Woodbury, Ma-

her Elkhaldi, Naghmi Shireen, and Michael Terry. Gem-ni: A system for creating and

managing alternatives in generative design. In Proceedings of the 33rd annual ACM

conference on human factors in computing systems, pages 1201–1210, 2015. 79

91

BIBLIOGRAPHY

92

Appendix A

Survey

This appendix includes the full survey for participants of the user study. It includes the

preamble and answering options. The original survey was created with Google Forms.

Creative Coding Editor User Study

This survey is part of Maximilian Mayer’s Master Thesis in Computer Science at the Vrije

Universiteit Amsterdam. For this thesis, a code editor for creative coding was developed,

incorporating novel versioning concepts, as well as a real-time preview for the P5JS library,

and many other convenience features.

In this first section, we will provide some background information for this survey, and

explain how we will use your data. Please read the following information carefully.

Goal and Nature of Data

The goal of this survey is to evaluate said editor. This will be done in the form of a

comparison with a baseline, the well-established P5JS Web Editor. First, you will test this

baseline editor, and fill out a portion of this survey. Then, you will test the Ghost Editor,

and fill out the same questions again. The questions will ask you about your experience

with the editors, and are designed to gain meaningful insights for this research project.

Some of these questions are of personal nature, including information about age, gender,

education, and profession. Answering these questions is not required, but helps to gain a

deeper understanding of the participant demographics for this study, and can be beneficial

to the overall results. Thus, we would be glad if you chose to provide this information.

93

A. SURVEY

Other questions refer to the personal user experience while using the editors. This data

can, and should, be opinionated. After all, the goal is to evaluate the user experience, and

every user will have a different experience.

Data Collection and Processing

All data collected in this survey is anonymous, and there is no way for the researchers

to relate it back to the individual taking this survey. The anonymous dataset will be

used by us to understand the impact of our efforts, and processed only to deepen this

understanding. Processing may include statistical tests to identify trends in the data, the

creation and interpretation of graphs, and other research-related practices.

This final results may be available to the public as part of the final Master Thesis, as well

as further research proceedings based on the Master Thesis. This may include the raw

data provided (e.g., a spreadsheet containing the full data set, quotes of specific answers

as examples in the thesis text), or processed forms of it (e.g., graphs depicting the survey

demographics, classifications derived from text answer).

Finally, please consider that this survey uses Google Forms, a service provided by Google,

and thus, an American company. The US Government has the right to forcefully acquire

all data on Google servers, if they desire to do so.

Consent and Contact

If you do not wish that your data is part of this survey, please do not submit any data, as

it might prove labor-intensive to remove your specific answers from the final data set. If

you submit data to this survey, you consent to us using it in the ways outlined above.

If you have any questions or other requests, please do not hesitate to contact Maximilian

Mayer directly, using this email: m.mayer@student.vu.nl

Otherwise, thank you for your participation!

Personal Information

Let’s start with some personal questions! If you feel comfortable about it, tell us a bit

about yourself, your background, and how you ended up in this study.

94

Note: The choice questions are marked as mandatory. If you prefer to not say, just choose

"Prefer not to say". That simplifies the final data extraction process for us.

Question 1: Age

Answering options:

1. 18 - 25

2. 25 - 30

3. 30 - 35

4. 35 - 40

5. 40 - 45

6. 45 - 50

7. 50 - 55

8. 55 - 60

9. 60+

10. Prefer not to say

Question 2: Gender

Answering options:

1. Female

2. Male

3. Non-Binary

4. Prefer not to say

Question 3: Highest Completed Education

Answering options:

1. None

2. (High) School Education

3. Bachelor (Computer Science)

4. Bachelor (Arts/Design)

5. Bachelor (Other)

6. Master (Computer Science)

7. Master (Arts/Design)

8. Master (Other)

9. PhD (Computer Science)

10. PhD (Arts/Design)

11. PhD (Other)

12. Prefer not to say

13. Other

95

A. SURVEY

Question 4: Currently Studying

Answering options:

1. None

2. (High) School Education

3. Bachelor (Computer Science)

4. Bachelor (Arts/Design)

5. Bachelor (Other)

6. Master (Computer Science)

7. Master (Arts/Design)

8. Master (Other)

9. PhD (Computer Science)

10. PhD (Arts/Design)

11. PhD (Other)

12. Prefer not to say

13. Other

Question 5: Current Profession

Answering options:

1. None

2. Studying

3. Working in Industry (Computer

Science)

4. Working in Industry (Arts/Design)

5. Working in Academia (Computer

Science)

6. Working in Academia (Arts/Design)

7. Prefer not to say

8. Other

Question 6: Have you programmed before?

Answering options:

1. Never

2. Occasionally

3. Sometimes

4. Often

5. Prefer not to say

96

Question 7: How experienced are you with Computer Science, and specif-
ically programming?

Answer on a scale from 0 to 10, with 0 meaning No Experience and 10 being Highly Skilled.

Question 8: Please describe your previous experience with programming
and Computer Science in some more detail

Long-form text answer.

Question 9: Have you done creative coding before?

Answering options:

1. Never

2. Occasionally

3. Sometimes

4. Often

5. Prefer not to say

Question 10: How familiar are you with Creative Coding, and how much
experience do you have?

Answer on a scale from 0 to 10, with 0 meaning No Experience and 10 being Highly Skilled.

Question 11: Please describe your previous experience with Creative
Coding in some more detail

Long-form text answer.

Question 12: Anything else you think would help us with our research?

Long-form text answer.

97

A. SURVEY

Editor Evaluation

This section has to be filled out once for each editor.

In this section, you will answer some questions for the reference editor, the P5JS Web

Editor. This editor is developed by the creators of the P5JS library, that is also at the

heart of our own editor. As such, it is very prominent on their web page, and for many

people, the first introduction to Creative Coding with P5JS.

To test this editor, you first perform some tasks to get acquainted with using the editor.

Then you will answer the questions below. You will answer the same questions later for

our own editor later as well. However, please answer these questions BEFORE testing the

other editor, to ensure you are not biased by the comparative experience.

Most questions will require you to rate your experience on a scale from 0 to 10. In this case,

0 refers to the lowest possible rating, and is equivalent with a terrible user experience that

would lead you to search for an alternative solution. 10 refers to an outstanding experience

that leaves nothing to desired, and you would use the editor again at any time. A score of

5 means that you were not bothered by the experience, but you would not recommend it

either.

Consider that most of these questions only refer to some small part of the overall experience.

The answers don’t have to reflect your overall decision on whether you would use the editor

or not. Specific comments can be added at the end of this section, if you want to highlight

certain elements that were particularly good or bad.

Instructions on how to test the editor will be given by the survey leader.

The editor can be found here: https://editor.p5js.org/

Additional references for P5JS: https://p5js.org/reference/

Please note:

To save sketches with this editor, you have to sign up on their page. You can also sign in

with GitHub or Google. While this is recommended, you can also just save the code to

files on your machine manually. If you do so, this should not affect your evaluation of the

experience in general, though, as this is a limitation of the design as a web service.

98

https://editor.p5js.org/
https://p5js.org/reference/

Usability

Question 1: How was the installation/startup process of the editor?

Answer on a scale from 0 to 10, with 0 meaning Terrible and 10 being Exceptional.

Question 2: How would you rate your first impression? Was everything as
expected, or did you miss/confuse something?

Answer on a scale from 0 to 10, with 0 meaning Terrible and 10 being Exceptional.

Question 3: How was the experience of creating your first program? Were you
held up by something, or could you start immediately?

Answer on a scale from 0 to 10, with 0 meaning Terrible and 10 being Exceptional.

Question 4: How intuitive was the overall user interface (UI) of the editor?
Did you find everything where you expected it?

Answer on a scale from 0 to 10, with 0 meaning Terrible and 10 being Exceptional.

Features

Question 1: How was the experience of editing code? Did you find all features
you would expect?

Answer on a scale from 0 to 10, with 0 meaning Terrible and 10 being Exceptional.

Question 2: Did the preview behave as expected? Did it benefit or hinder your
development process?

Answer on a scale from 0 to 10, with 0 meaning Terrible and 10 being Exceptional.

Question 3: Did you find all features you expect from a fully functional code
editor? Did they work as expected?

Answer on a scale from 0 to 10, with 0 meaning Unusable and 10 being Fully Featured.

99

A. SURVEY

Question 4: How helpful was the editor in case of errors? Did you feel well-
supported in debugging your code?

Answer on a scale from 0 to 10, with 0 meaning Terrible and 10 being Exceptional.

Question 5: Creating and managing many different versions is considered a
crucial workflow for creative coding. Did the editor support you in this?

Answer on a scale from 0 to 10, with 0 meaning No Support and 10 being Exceptional

Support.

Performance

Question 1: How did the performance of the editor influence the experience?

Answer on a scale from 0 to 10, with 0 meaning Terrible and 10 being Exceptional.

Question 2: How smooth and bug-free was the experience?

Answer on a scale from 0 to 10, with 0 meaning Very Rough and 10 being Completely

Smooth.

Question 3: How stable did the editor run?

Answer on a scale from 0 to 10, with 0 meaning Terrible and 10 being Exceptional.

Learning Curve

Question 1: How quickly were you able to learn how to use the code editor
effectively?

Answer on a scale from 0 to 10, with 0 meaning Steep Learning Curve and 10 being Very

Easy.

100

Question 2: Would you recommend this code editor to beginners in the field
of creative coding?

Answering options:

1. No, to no one.

2. Only with solid background

knowledge.

3. To those with some experience.

4. Yes, to everyone.

5. Other (additional text option)

Overall

Question 1: How would you rate the overall experience of using the editor?

Answer on a scale from 0 to 10, with 0 meaning Terrible and 10 being Exceptional.

Open Questions

Question 1: Briefly describe your experience of using the editor.

Long-form text answer.

Question 2: What were the best features of the editor?

Long-form text answer.

Question 3: What did not work as expected?

Long-form text answer.

Question 4: What would you wish for to improve this editor?

Long-form text answer.

Question 5: Whom would you recommend this editor to?

Long-form text answer.

101

A. SURVEY

Ghost Editor: Feature Questions

In this section, we added some more specific questions towards special features that only

our editor supports. They are designed to help us understand if they provide any additional

value for users.

Again, remember: Most questions will require you to rate your experience on a scale

from 0 to 10. In this case, 0 refers to the lowest possible rating, and is equivalent with a

terrible user experience that would lead you to search for an alternative solution. 10 refers

to an outstanding experience that leaves nothing to desired, and you would use the editor

again at any time. A score of 5 means that you were not bothered by the experience,

but you would not recommend it either. Specifically, 5 also represents a lack of

experience, e.g., if you did not use the feature at all.

Consider that most of these questions only refer to some small part of the overall experience.

The answers don’t have to reflect your overall decision on whether you would use the editor

or not. Specific comments can be added at the end of this section, if you want to highlight

certain elements that were particularly good or bad.

102

Snapshots

Question 1: How often did you create snapshots of code blocks?

Answering options:

1. Never

2. Occasionally

3. Sometimes

4. Often

Question 2: How did you like the visual representation of snapshots in your
code? Was it helpful or not?

Answer on a scale from 0 to 10, with 0 meaning Distracting and 10 being Beneficial.

Question 3: Did the visual representation of these snapshots in the code impact
your workflow?

Long-form text answer.

103

A. SURVEY

Timeline

Question 1: How often did you use the timeline feature to access previous
versions for a snapshot/block of code?

Answering options:

1. Never

2. Occasionally

3. Sometimes

4. Often

Question 2: How useful was the timeline to your workflow?

Answer on a scale from 0 to 10, with 0 meaning Useless and 10 being Extremely Valuable.

Question 3: How did you use the timeline, and how did that impact your
workflow?

Long-form text answer.

104

Version View

Question 1: How often did you create saved versions and accessed them in the
separate version view?

Answering options:

1. Never

2. Occasionally

3. Sometimes

4. Often

Question 2: How useful was the separate version view for you to compare
versions and access old code snippets?

Answer on a scale from 0 to 10, with 0 meaning Useless and 10 being Extremely Valuable.

Question 3: How did you use the version view, and how did that impact your
workflow?

Long-form text answer.

105

A. SURVEY

Version Editor

Question 1: How often did you use the version editor over the main editor to
edit a specific version?

Answering options:

1. Never

2. Occasionally

3. Sometimes

4. Often

Question 2: How useful was the version editor, e.g., to focus on a smaller code
segment when editing a version?

Answer on a scale from 0 to 10, with 0 meaning Useless and 10 being Extremely Valuable.

Question 3: How did you use the version editor, and how did that impact your
workflow?

Long-form text answer.

106

Error Hints

Question 1: How often did you use the error hint feature to explain an error
message in more detail?

Answering options:

1. Never

2. Occasionally

3. Sometimes

4. Often

Question 2: How useful were the error hints to you?

Answer on a scale from 0 to 10, with 0 meaning Useless and 10 being Extremely Valuable.

Question 3: How did error hints influence your workflow?

Long-form text answer.

107

A. SURVEY

Comparison and Final Thoughts

In this final section, you will now ask you to describe briefly about your overall opinion on

the two editors, and how they compared for your workflow.

Question 1: Briefly compare your experience between the first and second
editor.

Long-form text answer.

Question 2: What is your overall opinion on the presented editors after
using them both? Do you have any specific thoughts you would like us
to know for any future development?

Long-form text answer.

Question 3: Anything else you would like to let us know?

Long-form text answer.

That’s it! Thank you so much for your time!

Your insights help us a great deal in improving our work in the future! Without you, this

research would not have been possible. So thank you a lot for taking the time, and filling

out this survey.

Now, all you have to do is click send in your results by clicking the button below! Again,

should you have any questions, do not hesitate to contact Maximilian Mayer under this

e-mail address:

m.mayer@student.vu.nl

I hope you have a great day! Thanks, and best regards,

Maximilian Mayer

108

Appendix B

Interview Questions

The following catalogue of questions was used as a baseline for interviews. However, due

to their semi-structured nature, interviews evolved dynamically and did not always abide

to this structure.

1. Which editor did you prefer?

(a) How was the general experience of using the editor?

(b) Was there any feature that stood out?

i. How and why?

(c) What was missing?

i. How would you improve that?

(d) How was the general experience of using the other editor?

i. What made the other editor worse?

A. How and why?

B. How was the chosen editor better at these points?

ii. What would have to change in the worse editor?

2. Did you use the snapshots feature in the Ghost Editor?

(a) How and why?

(b) What was useful?

i. Specifically, the timeline feature?

ii. Specifically, the version view feature?

iii. Specifically, the version editor feature?

109

B. INTERVIEW QUESTIONS

(c) What was distracting/bad?

i. Specifically, the timeline feature?

ii. Specifically, the version view feature?

iii. Specifically, the version editor feature?

(d) Would you use the feature(s) outside creative coding?

i. How and why?

3. Would you use either editor (as a whole) outside creative coding?

(a) How and why?

(b) What could be improved to make the editor(s) more suitable?

110

	List of Figures
	List of Tables
	1 Introduction
	1.1 Creative Exploration
	1.2 Version Control for Exploration
	1.3 Goal
	1.4 Research Questions
	1.5 Contributions and Structure

	2 Background
	2.1 Exploratory Programming
	2.1.1 The Need for Exploration
	2.1.2 The Exploratory Process
	2.1.3 Exploratory Tooling

	2.2 Creative Coding
	2.2.1 Code and Creativity
	2.2.2 Tools for Creative Coding

	2.3 Version Control Systems
	2.3.1 Version Management
	2.3.2 Creative Version Control
	2.3.3 The Interface Problem

	3 Concept
	3.1 The Confidence Crisis
	3.2 Exploring with a Map
	3.3 The Ghost Framework
	3.3.1 An In-Depth Look: Intuitive Assistive Automation
	3.3.2 IAA in Practice
	3.3.3 Trusting in Ghosts
	3.3.4 Building Tools with the Ghost Framework
	3.3.4.1 Backend Design: Data-Driven Tool Support
	3.3.4.2 Frontend Design: User Interaction
	3.3.4.3 Integration of Front- and Backend

	3.3.5 Limitations

	4 Design
	4.1 The Ghost Editor
	4.1.1 Core Concepts
	4.1.2 Auxiliary Creative Coding Concepts

	4.2 Architecture
	4.2.1 Backend Architecture
	4.2.1.1 Functional Components
	4.2.1.2 Data Scheme

	4.2.2 Frontend Architecture
	4.2.3 Interface Architecture

	4.3 Implementation
	4.4 Limitations

	5 Evaluation
	5.1 Study Execution
	5.2 Participants
	5.3 Collected Data
	5.4 Evaluation Process
	5.4.1 Survey Data
	5.4.2 Interviews

	5.5 Results
	5.5.1 Participant Demographic
	5.5.2 Editor Evaluation
	5.5.2.1 P5JS Web Editor
	5.5.2.2 Ghost Editor

	5.5.3 Versioning System Evaluation
	5.5.3.1 Layer 1: Code Highlight
	5.5.3.2 Layer 2: Version Interface
	5.5.3.3 Layer 3: Version View
	5.5.3.4 Layer 4: Version Editor
	5.5.3.5 Error Hints

	6 Discussion
	6.1 Preliminary Considerations
	6.1.1 Participant Bias
	6.1.2 Study Design

	6.2 RQ1RQ1: Exploration in Creative Tool Design
	6.2.1 RQ1-1RQ1-1: Exploration through Interface Design
	6.2.2 RQ1-2RQ1-2: Reflection through Tools

	6.3 RQ2RQ2: Exploration and Reflection in Version Control
	6.4 RQ3RQ3: Improvement over Existing Tools
	6.5 Further Suggestions

	7 Threats To Validity
	8 Related Work
	9 Conclusion
	Bibliography
	A Survey
	B Interview Questions

