
Master Thesis

A First Investigation Into the Detection of Energy-related Issues
in Microservice-based Systems via Anomaly Detection and

Root-Cause Analysis

by

Christos Petalotis
(2739394)

First supervisor: Ivano Malavolta
Daily supervisor: Ivano Malavolta

Second reader: Vincenzo Stoico

November 17, 2023

Submitted in partial fulfillment of the requirements for
the joint UvA-VU degree of Master of Science in Computer Science

A First Investigation Into the Detection of Energy-related Issues
in Microservice-based Systems via Anomaly Detection and

Root-Cause Analysis
Christos Petalotis

Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
c.petalotis@student.vu.nl

ABSTRACT
Context. As the trend toward microservice-based architecture gains
traction in software application development and deployment, sys-
tem complexity experiences a significant upsurge. This, in turn, has
a detrimental influence on observability and maintainability. To
tackle these challenges, numerous solutions that conduct anomaly
detection and root cause analysis have been developed. These solu-
tions make use of logged metrics pertaining to hardware resource
utilization. However, these solutions commonly overlook the incor-
poration of system energy consumption. While prior research has
predominantly focused on the fundamental techniques underpin-
ning anomaly detection and root cause analysis, as well as their
performance assessment in conjunction with hardware utilisation
metrics, the aspect of system energy consumption has remained
noticeably unaddressed.
Goal. In this paper, we examine the effectiveness of anomaly de-
tection and root cause analysis tools for microservice-based ap-
plications, particularly emphasizing on energy consumption met-
rics. We investigate whether and how energy consumption metrics,
can enhance anomaly detection’s ability to identify energy-related
anomalies and aid root cause analysis in revealing their true causes.
Method. This study is centered on two distinct systems, namely
SockShop and Zahori, varying in complexity and purpose. From
a large pool of tools, PyCaret was selected for anomaly detection
and RCD for root cause analysis in our experimentation efforts.
Metrics were gathered from the target systems using a cross-over
paired comparison design, involving multiple randomised runs to
establish robust measures.
Results. The anomaly detection solution employed shows weak
performance in terms of adjusted recall, and F1-score, indicating
poor ability detecting anomalies related to energy consumption.
These values are around 19.5%, and 32.1% accordingly for both
target systems. Precision stands around 90%. The results for root
cause analysis in terms of precision at the top 3 predictions by the
employed solution tend to be weak, with the average value (AP@3)
standing at 43.6% for SockShop and 37.2% for Zahori.
Conclusions. The research findings demonstrate that anomaly de-
tection yields precise forecasts regarding anomalies within metric
segments. Nonetheless, both anomaly detection and root cause anal-
ysis exhibit a tendency to miss several instances that require identi-
fication as anomalies or their causal factors. Consequently, further
research efforts are imperative to develop tools and methodologies
that can harness energy consumption metrics from microservice-
based applications effectively, ensuring satisfactory performance.
Practitioners are encouraged to employ AD solutions together with

other tools to cover a wider spectrum of energy consumption anom-
alies. The performance of RCA on energy consumption data and
related anomalies was found lacking, thus it is advised system
operators rely on other tools to find the root causes of energy
consumption anomalies.

1 INTRODUCTION
The increasing adoption of microservice-based architectures has
revolutionised the development and deployment of modern soft-
ware applications. By decomposing complex monolithic systems
into smaller, loosely coupled services, microservices offer numerous
benefits such as scalability, flexibility, and faster time-to-market
[1, 2]. However, microservices’ distributed nature brings new chal-
lenges, particularly inmonitoring andmanaging individual services’
performance and energy consumption within the overall applica-
tion [3].

The efficient utilisation of hardware resources and energy con-
servation are crucial considerations for the sustainable operation of
high-performing microservice-based applications. Excessive energy
consumption not only incurs unnecessary costs but also contributes
to environmental concerns, such as carbon emissions and energy
waste. To address this issue, it is imperative to employ effective
techniques to detect energy anomalies within microservice-based
architectures and identify their root causes to timely and effectively
provide solutions to them.

However, today the task of detecting anomalies in a system is
primarily focused on performance-related metrics [4, 5]. To effec-
tively discover performance-related issues in systems utilising the
microservice architecture, specialised tools that conduct anomaly
detection (AD) and root-cause analysis (RCA) are usually employed
[6–9].

Previous research in the field has predominantly focused on the
various ways for conducting AD or RCA, whether this involves
supervised [10–12] or unsupervised machine learning models [13–
15], the analysis of different artefacts, such as Key performance
indicators (KPIs), logs, and traces, as well as the deployment con-
figurations employed, such as Kubernetes [16–18]. Furthermore,
other studies focus specifically on the performance evaluation of
such techniques based on KPIs [19, 20]. Additionally, extensive aca-
demic research has been conducted to define specific approaches to
perform AD or RCA, individually or in combination, and compare
their effectiveness against similar tools [9, 21].

However, a critical aspect that has been noticeably absent from
these studies is the consideration of energy-related metrics. The
research conducted so far has not sufficiently explored the accuracy

1

of AD and RCA techniques in detecting energy anomalies, thereby
leaving an essential aspect of microservice-based systems unat-
tended. Consequently, such systems remain vulnerable to energy-
related faults that may elude detection by system administrators
and operators.

In this paper, we delve into the efficacy of anomaly detection
and root cause analysis tools in the context of microservice-based
applications, with a specific focus on energy consumption met-
rics. Our research aims to investigate the extent to which energy
consumption metrics, along with performance metrics, can be effi-
ciently utilised by anomaly detection techniques to detect energy
anomalies and by root cause analysis techniques to uncover the
underlying causes of such anomalies.

To achieve this, the performance of AD and RCA is assessed in
terms of correctness, completeness, and accuracy. This is done by
defining a ground truth using specific rules about what constitutes
an anomaly in the metrics and evaluating the results AD and RCA
produce according to the ground truth data.

For this exploration, two microservice-based systems have been
utilised - SockShop1 and Zahori2. SockShop has been developed by
a group of individual developers, while Zahori is the product of a
dedicated team of developers working for Panel Sistemas3. More-
over, specialised software is utilised to monitor and gather metrics
from the selected systems. More specifically, Prometheus4 is used
to monitor and collect hardware utilisation-oriented metrics, such
as CPU and RAM usage, while SmartWatts5 is employed to monitor
the power consumption of the underlying system. Additionally,
we conduct anomaly detection on the collected KPIs and energy
consumption metrics using the PyCaret6 solution by utilising mul-
tiple of the provided Machine Learning (ML) models that can be
used with this solution. If anomalies are detected in the metrics
of the underlying system, then RCA is conducted using the RCD7

tool. These solutions were selected from a large pool of considered
tools because of their ease of use, the low effort for setting them
up, their flexibility in performing their functionality using different
configurations, and their ability to accept multiple types of data
rather than have requirements on the types of metrics that can be
used for their operation, constraining their applicability to only
those types.

Furthermore, this study introduces a pipeline to measure systems
of interest and includes the steps to perform anomaly detection
and root-cause analysis on these systems. We name this pipeline
Data-Driven Anomaly Diagnosis (DDAD), as data constitutes the
foundation on which anomalies in a system are found and analysed,
with the ultimate goal of fixing problems and errors related to
diagnosed energy anomalies.

The target audience of this paper is mainly system operators,
who are in charge of managing, maintaining and adjusting mi-
croservice-based systems, but also researchers in the field of AD
or RCA and of microservices more generally. As stated earlier,

1https://github.com/microservices-demo/microservices-demo
2https://zahori.io
3https://www.panel.es/
4https://prometheus.io/
5https://github.com/powerapi-ng/smartwatts-formula
6https://pycaret.org/
7https://github.com/azamikram/rcd

system operators could benefit a lot from the results of this study,
as they could utilise anomaly detection and root-cause analysis
techniques to swiftly detect issues that affect the systems’ energy
consumption, making these systems more sustainable and cost-
effective. Additionally, operators can potentially proactively detect
and tackle system errors and other issues using energy consumption
as an early indicator of abnormal utilisation of system resources.
Moreover, the findings of this study can be used as hard evidence
about the current state of AD and RCA techniques in terms of their
appropriateness of operating using energy consumption metrics
and as a first touch-point by researchers to conduct further studies
on this topic and expand the knowledge of the community on
the potential benefits of using AD and RCA techniques on energy
consumption data.

In summary, this paper makes three main contributions.
★ Empirically assesses the effectiveness of anomaly detection

techniques in discovering energy consumption anomalies inmicroservice-
based systems.

★ Empirically assesses the effectiveness of root cause analysis
techniques in identifying the root causes of energy consumption
anomalies in microservice-based systems.

★ Introduces a method, called Data-Driven Anomaly Diagnosis
(or DDAD), that can be followed to perform anomaly detection and
root-cause analysis on microservice-based applications.

This study is part of a research project conducted in collaboration
with Luka Krumpak. Sections 1 - 6 and 9 were completed partially in
collaboration, while the rest of the sections are unique to this paper.
The replication package for this study is available on GitHub8.

2 BACKGROUND
2.1 Microservice Architecture
Microservices architecture (MSA) is a software development ap-
proach that involves breaking down a monolithic application into
smaller, independent services [22]. These self-contained services
can be developed, deployed, and scaled autonomously, resulting
in enhanced flexibility and agility throughout the development
process.

In the context of MSA, each service is designed to perform a
specific function and only this function. The services communicate
with other services through APIs, ensuring seamless interactions
between components. Unlike monolithic approaches, a key charac-
teristic of microservices is having the services loosely coupled. This
approach improves flexibility and scalability, enabling independent
development, deployment, and maintenance of each service.

By employing this approach, the complexities of managing and
maintaining large applications are significantly reduced. One of
the key benefits of MSA lies in its fault tolerance and resilience.
Since each service operates independently, issues in one service are
less likely to cascade and affect the entire system. This isolation
contributes to a more stable and robust application.

However, it is worth noting that service faults are not absent.
Based on a survey conducted by Markos et al [23], a significant
proportion of interviewed professionals (57% and 49%, respectively)
consider the challenges of testing the entire system and detecting

8https://github.com/vuDevOps

2

service faults to be crucial in the context of microservices. Con-
sequently, our study aims to explore the possibility of leveraging
energy performance metrics to facilitate the detection of service
faults and enable informed decisions regarding optimising system
architecture and deployment strategies, thereby minimising envi-
ronmental impact and operational expenses.

2.2 Containerisation
When it comes to containerisation, there are multiple solutions that
are available, most notably Docker. Each service has its benefits
and applications. Nevertheless, Docker remains one of the most
commonly used and popular containerisation platforms [24].

Docker is a platform that enables developers to create and man-
age containers, which are lightweight, portable, and self-contained
environments for running applications. Containers are used ex-
tensively in microservices architecture to help break down large
applications into smaller, more manageable components. By us-
ing Docker containers, developers can package their applications
with all the necessary dependencies and configurations, making
deploying and scaling their services more manageable. In addi-
tion, Docker’s containerization technology guarantees uniformity
across various environments, minimizing any possible problems
that may arise from differences between development, testing, and
production configurations.

2.3 Anomaly Detection & Root Cause Analysis
Anomaly detection and root cause analysis are essential data anal-
ysis and problem-solving techniques. Anomaly detection involves
identifying data points or patterns that deviate significantly from
the norm within a given dataset. These anomalies can represent
critical insights, such as irregular energy consumption patterns, un-
expected microservice performance fluctuations, or atypical system
behaviours.

Root cause analysis, on the other hand, aims to uncover the
underlying factors or triggers that lead to observed anomalies or
problems. By delving into the root causes, one can understand why
certain events occur and devise effective strategies to address and
prevent them in the future. In unison, the fusion of anomaly detec-
tion and root cause analysis empowers organizations to manage
risks and optimize operations proactively.

2.4 Measuring energy consumption
2.4.1 Smartwatts. When it comes to energy profiling techniques
and power management frameworks, the options available are
quite diverse[25, 26]. These methods encompass a wide range of
granularity when collecting metrics, varying levels of accuracy
in measurements, different degrees of performance overhead, and
distinct levels of reproducibility. To ensure an optimal choice for
dynamic power monitoring, careful consideration of these factors
is essential.

In this study, we have chosen to use PowerAPI9, an open-source
project that provides tools and libraries for monitoring energy
consumption at a process level. Within the PowerAPI project, there
is a component called SmartWatts10, which is specifically designed

9https://powerapi.org/
10https://github.com/powerapi-ng/smartwatts-formula

to support power monitoring and management in real time. This
component adopts online calibration to automatically adjust the
CPU and DRAM power models, resulting in more accurate runtime
power estimations for docker containers [27].

3 RELATEDWORK
Numerous scientific papers discuss techniques for anomaly detec-
tion, root-cause analysis, or both on microservice-based applica-
tions and ways of measuring systems’ energy consumption. This
section provides a overview of some important work related to our
study and how they could help aid in our research.

Jay et al. [28] emphasise the importance of considering the en-
ergy aspect of digital activities and explores various software-based
power meters that can help realise the energy impact of such activ-
ities. They assess the accuracy of these tools in measuring power
consumption and compare their performances. The focus is on mea-
suring the energy consumption of computer nodes, applications
and individual services that are CPU or GPU-intensive. The envi-
ronmental impact of applications is also evaluated by measuring the
energy consumption required by the systems used for the conducted
experiments. Our study, however, focuses on microservice-based
applications and whether anomaly detection and root-cause analy-
sis techniques can utilise the gathered energy metrics. The research
carried out by Jay et al. is the initial step in the process followed
in this study, which involves capturing the energy consumption of
software systems. Their findings will be useful in conducting AD
and RCA to detect energy anomalies in a system by providing an
indication of accurate software-based power meters based on the
target system’s characteristics.

In a separate study, Noureddine et al. [26] has thoroughly evalu-
ated a range of methodologies for quantifying both hardware and
software energy consumption. The current energy measurement
landscape is divided into three categories: hardware measurement,
power models, and software measurement. While hardware mea-
surement offers unparalleled precision, it operates at a more gran-
ular level and, as such, requires additional hardware and greater
scalability. On the other hand, power models can suffer from gen-
erality or platform dependency. However, when deployed, they
provide a clearer insight into how and where energy is spent in
software. The present study differs from that of Noureddine et al. in
that it does not evaluate various methods for determining energy
consumption. Instead, the focus is solely on measuring the energy
consumption of microservices. Nonetheless, powermodels have
been identified as the most suitable for our research.

In another study, Soldani et al. [4] direct their attention to the
research conducted on AD and RCA techniques that enable and
expedite the detection of system failure symptoms and the root
causes for observed anomalies. In particular, they focus on tools
that can be applied to systems developed using a microservice ar-
chitecture. Their primary goal is to present these techniques’ main
characteristics, shortcomings, and requirements. However, none
of the explored techniques for AD and RCA centres on the energy
consumption of the underlying systems and the detection of energy-
related irregularities. Unlike Soldani et al., we aim to evaluate how
effective AD and RCA techniques are in detecting energy anomalies
and their causes by integrating energy consumption metrics into

3

their process. In both studies, the interest is in microservice-based
systems. Nevertheless, we are concerned about AD and RCA as pro-
cesses and do not investigate which tool performs better. Similarly
to the research conducted by Jay et al., the paper by Soldani et al. is
complementary to our research as it can facilitate the selection of
the appropriate technique to conduct AD or RCA based on the sys-
tem characteristics and the need for detecting energy consumption
anomalies.

Jiang et al. [29] recognise the difficulty in monitoring microser-
vice architectures and discovering anomalies. They challenge the
degree to which diagnostic metrics are appropriate for performing
such processes and suggest an alternative solution that depends on
only minimal API logs. A detailed description of their approach and
its performance and a comparison with previously developed solu-
tions are provided. Although both Jiang et al. and our study focus
on microservice-based systems and the discovery of anomalies in
these systems’ metrics, we are interested in the sustainability aspect
of the solution rather than the way the solution is designed and
developed. Additionally, the underlying metrics utilised to conduct
the considered anomaly detection techniques differ in that Jiang
et al. highlight the adequacy of sparse API logs for AD, while our
research attempts to realise how effective AD and RCA processes
can be when they utilise performance-oriented metrics and target
energy anomalies.

The subsequent study by Capra et al. [30] underscores the signif-
icance of investigating energy anomalies, as application software
significantly influences energy consumption. While executing the
application, the server’s power consumption surged by as much
as 72 percent compared to the power drawn during idle periods.
Moreover, the choice of software introduced substantial variabil-
ity in energy usage. Furthermore, energy consumption is lower
when software is structured with fewer layers and adeptly lever-
ages application development environments. With the popularity of
microservices, investigating methods to identify and address these
energy anomalies emerges as a crucial endeavour, poised to provide
a fine-grained explanation of energy anomalies which otherwise
might have been missed.

In summary, this paper presents the first study into detecting
energy-related problems inmicroservice-based systems using anom-
aly detection and root cause analysis. By utilising advanced tech-
niques, our study aims to contribute to the field by providing a
comprehensive understanding of energy consumption patterns
within microservices architectures, which is critical for system
performance and sustainability.

4 EXPERIMENT DEFINITION
The scope of the experiment comprises applications developed
using a microservice-oriented architectural style, focusing on ex-
ploring energy consumption as an appropriate parameter used to
conduct anomaly detection and root-cause analysis on such sys-
tems. The goal is to empirically evaluate the extent to which the
outcomes generated by such techniques include predetermined, de-
liberately introduced anomalies related to performance and energy
consumption within microservice-based applications. We investi-
gate the efficacy of integrating energy metrics into said AD and
RCA techniques to fulfil their intended purpose.

Analyse anomaly detection and root cause analysis
algorithms for the purpose of evaluating their

effectiveness in detecting energy consumption
anomalies in microservice-based applications

What is the effectiveness of root cause
analysis techniques in identifying the root

causes of energy consumption anomalies in
microservice-based applications?

Precision

Goal

Questions

Metrics

What is the effectiveness of anomaly detection
techniques in detecting energy consumption

anomalies in microservice-based applications?

F1-Score

Recall

P@k

AP@k

Figure 1: Visual Representation of the GQM

In this section, we establish the objectives of the presented ex-
periment, delineate the research questions addressed in this paper,
and specify the metrics employed to achieve these objectives. More
specifically, the goal of the experiment can be stated formally using
the GQM framework [31] in the following manner:

“Analyse anomaly detection and root cause analysis algorithms
for the purpose of evaluation with respect to their effectiveness in
detecting energy consumption anomalies as seen from the point of
view of system operators and researchers in the context of microservice-
based applications”.

A visual representation of this definition is shown in Figure 1.
The motivation behind such exploration stems from the fact that

despite the abundance of AD and RCA tools for analysing anom-
alies in microservice-based systems and finding the root of these
problems, energy consumption is notably absent from the documen-
tation and corresponding studies of such tools. As systems get big-
ger and more powerful, and organisations are looking to minimise
their infrastructure-related costs, it is important to understand the
energy consumption anomalies that arise on microservice-based
applications so that system operators, or other responsible parties,
can quickly detect and address the root causes of these situations.
At the same time, abnormally low or high energy measures might
indicate an issue in the underlying system before the problem has
propagated to other areas or even has any notable effects on the
system’s operation. Such information could be used proactively to
address dysfunctional components within the system, thereby miti-
gating the escalation of issues and their subsequent propagation
to other facets of the application. For example, a web application
system that uses a cache to serve some popular user requests might
have a faulty cache strategy or error in the code for the cache logic
leading to extensive use of the system’s database system and, sub-
sequently, to an abnormally increased energy consumption by the
corresponding service. Such a conclusion might be drawn even
before the abnormally increased operational usage of the database
is detected, by analysing energy-related metrics, allowing the sys-
tem operators to realise the presence of a system irregularity at an
earlier time than usual.

To investigate the aforementioned objective of this study, we
explore the answers to the following research questions:

4

RQ1: What is the effectiveness of anomaly detection tech-
niques in detecting energy consumption anomalies
in microservice-based applications?

RQ2: What is the effectiveness of root cause analysis tech-
niques in identifying the root causes of energy con-
sumption anomalies in microservice-based applica-
tions?

The effort to assess AD and RCA tools in their ability to cor-
rectly identify anomalies in a system’s energy consumption logged
metrics focuses on the experimentation of two microservice-based
systems and proposes an indicative pipeline to conduct AD and
RCA in a partly-automated way. Firstly, a research-oriented refer-
ence application, called SockShop, is used to perform a small-scale
exploration and refinement of the AD and RCA pipeline used in
this study and to verify its execution reliability. A reliable, fully-
operational pipeline is then utilised to evaluate how effective AD
and RCA tools are in integrating energy consumption metrics on a
production-level application that is deployed and applied "in the
wild". The industrial system employed is Zahori, an open-source
RPA tool for process automation developed by Panel Sistemas11.
We employ PyCaret and RCD to perform anomaly detection and
root-cause analysis on these systems. Both tools utilise machine
learning techniques to achieve their indented functionality.

This experimentation is based on the power consumption of each
service of each system, which is measured inWatts using specialised
software called SmartWatts. The power consumption values are
translated to energy consumption values for the purpose of our
experiment. Other performance-oriented metrics are gathered from
the system as well, such as CPU and Memory (RAM) usage, to be
used by the tools. For this purpose, the underlying systems have
been instrumented using Prometheus12.

The assessment of the performance of AD and RCA tools in
identifying anomalies within a microservice-based system and dis-
covering the underlying root cause of these anomalies, respectively,
is conducted through three distinct sections: correctness, complete-
ness, and accuracy. Correctness is used to evaluate the performance
of both AD and RCA, while completeness and accuracy are used
solely for the evaluation of AD’s performance.

The correctness of the results for AD and RCA is evaluated using
the precision metric. This metric enables the measurement of the
relevance of the generated results by indicating the percentage of
anomalies or root causes that are accurately identified as such. This
assessment considers the anomalies related to energy consumption
detected by the AD process, whereas it considers all the root causes
that RCA identifies. In particular, we use an adjusted version of
precision for AD, while for RCA, we compute the precision at top
k, signified by P@k, and the average precision at top k, shown as
AP@k. These metrics are important, as low levels of correctness
could indicate that AD or RCA cannot operate efficiently when
they integrate energy consumption metrics into their process.

Recall (also known as sensitivity or true positive rate [32]) is
used to measure the extent of completeness in the outcomes gen-
erated by the AD process. This metric reveals the process’ ability
to identify pertinent results, specifically services exhibiting energy

11https://www.panel.es/
12https://prometheus.io/

anomalies in the case of AD. When the completeness level is low,
employing AD may lead to unnecessary overhead, which fails to
generate useful conclusions. This overhead manifests as the re-
quirement to appropriately instrument the target system to expose
energy consumption metrics, as well as tasks for data collection
and processing, before passing them to AD tools.

The accuracy of the results AD generates is gauged using the F1-
score metric. The value of this metric is a measurement of both the
completeness and the correctness of the tools and is defined as the
harmonic mean of precision and recall. This metric is useful when
an imbalance between positive and negative samples is expected.
This is true in our case, as the number of dataset entries with
anomalies is expected to be significantly higher compared to the
ones with non-anomalous values. For both recall and F1-score, we
compute the adjusted versions. This is further discussed in Section
5.

Using a partially automated pipeline to explore irregularities and
their root causes is crucial for system operators, as it allows them
to focus on resolving system problems and errors and not dawdling
on inspecting and detecting potential issues. This way, their work-
flow is significantly accelerated while the system is monitored and
analysed for potential issues. Moreover, this pipeline contributes to
the automation of a large part of the experiment conducted as part
of this research, enabling long and multiple runs of the AD and
RCA cycle and repeating the same process with different configura-
tions. Some steps of this pipeline need to be conducted manually by
system operators. This is required to set up the application being
inspected and the tools used for AD and RCA. Human intervention
is also essential to make a final assessment of the generated results.
This pipeline is further discussed in Sections 5 and 6.

The findings of this study yield insights and empirical evidence
concerning anomalies in energy consumption exhibited bymicroservice-
based applications, which can be utilized as input in anomaly de-
tection and root-cause analysis techniques. Incorporating such
metrics, previously overlooked in the context of anomaly detection
and root-cause analysis of microservice-based applications, has the
potential to foster a software engineering approach that prioritizes
sustainability.

5 EXPERIMENT PLANNING
In an effort to establish a transparent and unambiguous experi-
mental environment, the present section defines the contextual
background and outlines the research plan adopted in this study.
This approach facilitates the derivation of robust and reproducible
results. To ensure methodological rigour, we adhere to the guide-
lines proposed by Wohin et al. [33]

5.1 Subjects Selection
The experiment carried out as an integral part of this study fo-
cuses on the offline analysis of the results generated by anomaly
detection and root-cause analysis techniques when applied to sys-
tems built upon a microservice-oriented architecture. Specifically,
the emphasis lies on evaluating the effectiveness of AD and RCA
processes when operating on such systems by using measures re-
lated to the power consumption of the individual services that
constitute a system, along with metrics about hardware resources

5

MongoDB

Front-end

MySQL

User Catalogue CartPayment

MongoDB

OrderMongoDB

Queue-MasterRabbitMQ

Shipping

Figure 2: SockShop Architecture

utilisation by these services as inputs. In particular, anomaly detec-
tion is conducted solely on energy consumption metrics, with RCA
utilising the whole spectrum of metrics collected from the under-
lying systems, namely hardware resource utilisation and energy
consumption metrics. This process takes place after the system has
operated for a period of five minutes and the conclusions of AD
and RCA have been generated and stored in CSV files for further
exploration by human operators.

The subject group for this experiment is comprised of two sys-
tems of different complexity levels; a research-oriented reference
application of medium complexity called SockShop and a industrial
system named Zahori, that is developed by Panel Sistemas and is
utilised in the real world for secure and efficient process automa-
tion. Panel Sistemas is a partner organisation in the conducted
research that contributes to the advancement of techniques that
enhance sustainability awareness while optimising its development
and deployment process to account for energy anomalies in Zahori.

Below you can find a brief description of each system that is
used as subject in our experiment.

5.1.1 SockShop. This application is a collective creation of Weave-
works13 and Container Solutions14 designed to simulate the user-
facing part of an e-commerce website that sells socks. It is a widely
used microservice designed to serve as an ideal setting for test-
ing new methodologies, technologies, and microservices-related
tools [3, 9, 16, 34–37]. As illustrated in Figure 2, this microservice
is made up of 13 different components that communicate with each
other using REST over HTTP. The front-end is where users can
make requests, while the catalogue provides product information
and the carts hold shopping carts. The user service handles user
authentication and stores user accounts, including payment cards
and addresses. The orders service is responsible for placing orders
from carts after a user logs in through the user service, and then
processes payment and shipping through the payment and ship-
ping services separately. It was intentionally designed to provide
as many microservices as feasible, utilizing frameworks such as
Spring Boot, Go Kit, and Node.js in its development.

5.1.2 Zahori. This is an open-source software solution that is de-
veloped by Panel. It is used in QA testing to automate repetitive
manual tasks on computer or software systems. It consists of two

13https://www.weave.works/
14https://www.container-solutions.com/

Zahori Server

Automated Processes

Back-end
Rest Api

Eureka

PostgresSQL

Aerokube

Front-end

Schedular

Custom Process

Figure 3: Zahori Architecture

main components, as shown in Figure 3 - the server and the auto-
mated processes.

The server is responsible for coordinating the execution of test
cases, defining test cases, configuring and scheduling processes
to be executed across multiple browsers and resolutions, display-
ing the progress of running executions, and presenting completed
execution results. It offers both a GUI and a REST API for commu-
nication with automated processes and other components. Service
discovery is facilitated by Eureka15 to ensure communication be-
tween the server and processes. Aerokube/Selenoid16 serves as
the testing platform responsible for running browsers in isolated
Docker containers, while Zahori utilizes PostgreSQL17 as a rela-
tional database for persistence.

The automated processes are responsible for implementing the
automated tests utilizing Selenium18. Each process communicates
with the server via a REST API, and is capable of generating ev-
idence of executed tests, including logs, screenshots, documents,
videos, and HAR files. With Zahorí, users can streamline their QA
testing process and improve their overall efficiency.

In order to draw meaningful and reliable conclusions about mul-
tiple types of systems and make the experiment applicable to a
wider spectrum of software solutions, our experiment incorporates
both relatively simple and more complex applications. Furthermore,
we evaluate the performance of more than one AD algorithms. This
approach enhances the applicability of our experiment, ensuring
that the findings can be applied to systems of various complexity
levels, without focusing only on a specific solution.

Both SockShop and Zahori are microservice-based applications.
The deployment of these applications involves leveraging Docker19
containers and Docker Compose20, a tool that facilitates the defini-
tion and deployment of multi-container applications by specifying
15https://cloud.spring.io/spring-cloud-netflix/multi/multi_spring-cloud-eureka-
server.html
16https://aerokube.com/selenoid/
17https://www.postgresql.org/
18https://www.selenium.dev/
19https://www.docker.com/
20https://docs.docker.com/compose/

6

services, networks, and volumes using YAML files. While Docker
Compose was employed for this experiment, alternative solutions
such as Kubernetes21 or other container orchestration mechanisms
could also be utilized for deploying the target applications. In any
case, it is required that the systems used as subjects in this study
are developed using the microservices architectural style and the
required metrics can be collected from such systems. There are
no other requirements, such as a specific programming language
used to develop the application or a certain application size or com-
plexity level. This approach allows for flexibility in the choice of
a solution for container orchestration and underlying application
while ensuring adherence to the core principles of microservices
and the successful collection of relevant metrics.

5.2 Experimental Variables
In this study, we explore whether AD and RCA techniques can
utilise energy consumption data to achieve their core functionality
and detect anomalies or root causes related to energy consump-
tion anomalies. To assess this ability, anomalies need to be present
within a system that potentially trigger the AD and RCA cycle,
allowing us to generate statistics about the tools’ performance.
To better understand the degree to which these tools can oper-
ate properly using energy metrics, we decided to inject anomalies
of various levels for various hardware components, namely CPU,
memory (RAM), and file system for each service. In other words, the
presence of a hardware resource anomaly constitutes the indepen-
dent variable of our experiment. The combination of the resource
that is stressed and the stress’ intensity are the characteristics that
differentiate between the treatments of this factor variable.

Anomalies are introduced into the target system in the form of
stress of individual system services. The solution that is employed
for the stress is stress-ng22, which is further discussed in Section 6.
Each hardware component is stressed at two intensity levels. These
levels correspond to 50% and 90% utilisation of the target hardware
component’s max capacity that is assigned to the stressed microser-
vice. These levels of hardware stressing were used to explore how
efficiently AD and RCA perform on both moderate and high inten-
sity anomalies. Their effectiveness is evaluated after combining the
results they generate regardless of the intensity level of the stress
applied.

Each service within SockShop has 1Gb of RAM and of 1Gb of
disk, while each service in Zahori is given 2Gb of RAM and 2Gb
of disk. Regarding processing power, each service in both of the
systems is allocated 1 CPU that is stressed at different levels. These
resources were found to be the minimum amount needed by the
systems to operate properly.

A 50% stress test in SockShop increases the RAM usage by 512Mb
when a memory-related anomaly is injected. The same amount of
bytes is written on the disk of the target application service when a
file system anomaly is injected. These values increase to 1024Mb of
excess RAM or disk utilisation when considering Zahori, as in this
case the allocated resources are 2Gb for memory and disk capacity.
Accordingly, when an anomaly of high intensity is injected to the
system (i.e. increase of resource utilisation of 90%) the RAM or

21https://kubernetes.io/
22https://wiki.ubuntu.com/Kernel/Reference/stress-ng

disk usage of the target SockShop service is increased by 921Mb,
when the type of stress targets the memory or disk of the service,
respectively. Stressing the Zahori services at 90% capacity results
to an increase of 1.8Gb in the utilisation of the allocated RAM or
disk, based on whether bytes are written using the memory or file
system stress-ng stressor. Lastly, the CPU anomalies refer to the
percentage of the maximum load the processor can take that is
directed towards the CPUs. We stress the CPU of each of the target
services at levels 50% and 90%.

While the different treatments are applied on the target services,
monitoring tools are utilised to extract metrics about resource utili-
sation and power consumption of these services. This data is then
provided as input to AD and RCA techniques. This process allows
the tools to yield outcomes that undergo statistical analysis to assess
their effectiveness. We quantify this performance using the statis-
tical metrics of precision, recall and F1-score (F1 for short) in the
case of anomaly detection. Specifically, we use the adjusted version
of these metrics, which means that an interval of metrics, rather
than a single point, is considered to compute these metrics. This
approach is followed because anomalies often occur continuously,
and not just on a certain moment, forming contiguous segments
of time in which a system is affected by the anomaly. This leads
to point-adjusted (range-based) evaluation metrics for anomaly
detection [38]. The evaluation of the results that RCA produces is
conducted using the metrics of precision at top k, signified as PR@k,
and the average precision at top k, signified as AP@k [21]. These
are the most commonly used metrics to evaluate ranked results.
[39]. All of these metrics are used to answer the research questions
defined in Section 4. To answer RQ1 we consider the process of
anomaly detection, whereas answering RQ2 involves analysing the
performance of the root-cause analysis process.

Following the concept of point-adjust metrics, the adjusted pre-
cision (P) of anomaly detection is measured by considering the
number of correctly and wrongly identified anomalous segments
during the operation of the system. Formula 1 refers to this metric.
The focus is on the detection of anomalies related to the energy
consumption of system services. A segment is considered to be
correctly detected as anomalous if any point in its range is deemed
correctly as anomalous according to the ground truth. In this case,
all other points in this interval are treated as they can be properly
detected as anomalies as well. If a segment that does not contain
any anomalous data points is marked as anomalous by anomaly
detection, the whole segment is incorrectly deemed anomalous.
This way we get True Positives (TP) and False Positives (FP), re-
spectively. If no points within a segment are marked as anomalous
in the ground truth, the whole segment is deemed non-anomalous.
An illustration of the decision on true positives, false positives, and
false negatives (discussed below) is depicted in Figure 4

adjusted(𝑃𝐴𝐷) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

For RCA, precision at the top k measures the proportion of cor-
rect predictions among the top K items the RCA solution identifies.
Per Li et al. [21], the calculation of this metric is achieved using
formula 2. In this formula, 𝑅 [𝑖] denotes the rank of a detected root
cause, and 𝑔𝑡 signifies the actual, known root cause of the system

7

0 1 1 1 0 0 1 1 1 0Ground truth

0 0 1 0 0 0 0 1 1 0True Positives

0 0 0 0 1 0 0 0 0 1False Positives

0 0 0 0 0 0 0 0 0 0False Negatives

Predictions

Figure 4: An illustration of the way true positives, false pos-
itives, and false negatives are derived using the notion of
segments and point-adjust metrics. Green signifies correct
identification of anomalous segment. Red indicates incorrect
characterisation of non-anomalous segment as anomalous.
Red border shows a miss in detecting anomalous segments
as so.

anomalies, constituting the ground truth. Moreover, 𝐴 is the set
of given anomalies, i.e. the sum of all the considered datasets that
correspond to trials during which anomalies are injected to services’
hardware components. In our experiment, the ground truth for RCA
is always comprised of only one entry, the injected anomaly in the
form of the stress of hardware resources. For this reason, when
calculating this metric, the denominator in formula 3 is always
going to have a value of 1.

𝑃@𝑘𝑅𝐶𝐴 =
1
|𝐴|

∑︁
𝛼∈𝐴

∑
𝑖<𝑘 (𝑅 [𝑖] ∈ 𝑔𝑡)
(𝑚𝑖𝑛(𝑘, |𝑔𝑡 |)) (2)

For root cause analysis, the average precision at k quantifies the
overall performance of the process, as follows:

AP@k =
1
𝑘

∑︁
1≤ 𝑗≤𝑘

𝑃@ 𝑗 (3)

In terms of adjusted recall (R), we examine the quantity of TP
and FN as follows:

adjusted(𝑅) = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4)

In the case of AD, a false negative (FN) indicates the number of
times an anomalous segment is not marked as such. For RCA, false
negatives are not relevant.

Lastly, the evaluation of AD’s accuracy is conducted by consid-
ering the f-score (F) metric. The F1-score is a metric that represents
the harmonic mean of precision and recall. It is defined as follows:

adjusted(𝐹1) = 2 × 𝑃 × 𝑅

𝑃 + 𝑅
(5)

Again, for anomaly detection, we evaluate performance using
the adjusted F1-score. This means that the computation of its value
is conducted using the adjusted precision and recall metrics.

At this point, it is important to specify what is considered to
be an anomaly in the collected metrics for the target system. In
other words, we need to lay down the rules that define the ground
truth about the anomalous state of a certain segment of evaluated
points. This is crucial to allow for the appropriate labelling of the
results of the anomaly detection process as correctly marked or
not. Subsequently, this affects the calculations for the dependent
variables defined for AD in this experiment, namely the adjusted
versions of precision, recall, and F1-score.

The need for this arises from the fact that an anomaly injected
into the target system might not be the only one that is present. It
is possible that the injected anomaly affects other services of the
application. In particular, as we focus on energy consumption, a
metric that is dependent on the utilisation of hardware resources,
we need to be able to define what is considered an anomaly in the
collected metrics for this variable.

For this reason, a normal operation of the target systems is first
conducted to collect metrics for them during a period of fiveminutes
without injected anomalies. These metrics are used as the baseline
for evaluating a certain data entry from the collected metrics and
its segment as anomalous or not. When comparing newly retrieved
data with the baseline, we consider a data entry anomalous when
the value of the data entry has a difference of at least the standard
deviation of the metric in the baseline data from the average (mean)
value for the same metric that is logged in the baseline dataset,
either upward or downward. The product of this process is the
ground truth that is later used for the deduction of the metrics for
AD.

5.3 Experiment Design
The application of the various treatments of the dependent variable
of this experiment, described in subsection 5.2, is conducted using
a cross-over design [40]. Every combination of the type of system
stressing and the intensity level is applied to each of the target
application’s services each time. This is done by introducing a spike
on the utilisation of just one hardware component for just one of the
application services at a time, while ensuring that the traffic directed
to the system is at relatively consistent levels between experiment
runs and trials. To achieve this, we have created a custom locust23
script for SockShop that generates predictable traffic to the system,
by sending requests to endpoints of the application that we specify.
For Zahori, we run a test process that has been developed and
made available by the software developers that build and maintain
Zahori.

Additionally, the order in which the system stressors (i.e. treat-
ments) are applied are randomised between experiment trials. This
is necessary to ensure that no bias exists in the order of execution of
the stressors and that any factors that could affect the experiment’s

23https://locust.io/

8

results, such as network and system conditions, are minimised and
spread out across different trials.

After metrics about hardware utilisation and energy consump-
tion of an application’s services have been collected fromPrometheus
and SmartWatts, the energymetrics are passed as input to the anom-
aly detection solution utilised for this experiment, namely PyCaret.
Then, the results generated by AD determine whether there is a
need for the execution of root-cause analysis on the collected met-
rics. The presence of detected anomalies in the application metrics
on energy consumption indicates the need for further analysis of
the data using RCA to identify the root of these anomalies. This is
done by utilising the RCD tool. A detailed description of the setup
and execution of the experiment is given in section 6. Finally, the
results of these two phases, AD and RCA, produce the material for
analysing the effectiveness in utilising energy consumption metrics
to detect energy consumption anomalies and combining energy
consumption metrics with performance-oriented metrics to identify
the root causes of such anomalies in the target application.

As described in 5.2, the combination of stress type and level that
is applied on the target system defines the type of treatments for
our experiment. We applied each treatment 20 times on the most
actively engaged services of the applications. For SockShop, we
targeted four services, while for Zahori, we focused on two services,
as described in Section 6. Moreover, we ran the target system 20
times without injecting any anomalies, i.e. without applying stress,
to capture the normal operation metrics of each system.

In total, the SockShop experiment involved 500 trials, with 4
services getting injected with anomalies of 3 different types and 2
intensity levels for twenty trials, in addition to 20 non-anomalous
trials. Regrading Zahori, the experimentation involved 2 services
getting stressed with 3 types of stressing and 2 levels of intensity for
each stress. Each trial is executed 20 times to smooth out outliers
that may occur in certain trials. Additionally, 20 non-anomalous
trials are conducted, resulting to a total of 260 trials for the Zahori
experiment. When the experiments for SockShop and Zahori are
completed, the DDAD pipeline is executed offline on the datasets
collected from each experiment trial, running three AD models on
every dataset. For this reason, the final count of AD results is three
times the number of experiment trial for each system. Subsequently,
the number of times RCD runs on the anomalous data is almost
tripled as well, depending onwhether an anomaly has been detected
in a certain dataset that triggers the execution of RCD, or whether
RCD managed to find the root cause.

The progression from the initial exploration and refinement
using the research-oriented SockShop system to the subsequent
deployment within Zahori represents a crucial step in our research.
It allows us to transition from an application-oriented for testing
purposes to a realistic, operational setting, facilitating a comprehen-
sive assessment of the efficacy of AD and RCA and the pipeline’s
capabilities and highlighting the pipeline’s potential for real-world
applications. This pipeline has been designed to be conducted in
a partially automated manner, with certain phases requiring the
intervention of a human operator to move forward. The process
flow graph of this pipeline is depicted in Figure 5 and described
further in Section 6.

6 EXPERIMENT EXECUTION
In this section, the arrangement of the experiment’s software and
hardware components is delineated. Additionally, the approach to
conducting the experiment and acquiring system metrics for the
designated applications is presented.

The anomaly detection and root cause analysis operations that
are described in this section are executed as part of the DDAD
pipeline that is designed and proposed as part of the current study.
This way, the functionality and reliability of the pipeline is prop-
erly demonstrated. Furthermore, we have conducted a thorough
exploration of the different techniques available for AD and RCA.
Our investigation has involved analysing a diverse range of tools
that utilise algorithms and adopt unique approaches that cover a
wide range of concepts.

6.1 Preparation
6.1.1 SockShop. A key requirement for this experiment was to
assess the performance of anomaly detection and root-cause analy-
sis tools under stress conditions. To achieve this, SockShop’s Docker
images were modified to incorporate stress-ng24, a versatile solu-
tion for imposing stress on system resources. This stress testing
tool can effectively generate a significant system load by deploying
various stressors such as CPU-intensive tasks, memory allocation,
disk I/O, and more. The modified Docker images25 used in this
experiment, which introduce stress-ng, were created by Lilly Wu.
This modification was made as part of Wu’s previous research ti-
tled "MicroRCA: Root Cause Localization of Performance Issues in
Microservices"[16].

In total, four critical user-facing microservices - catalogues, or-
ders, payment, and shipping - were subjected to stress using modi-
fied images out of the 13 microservices. Since the system is inter-
connected, any changes made to the performance of these services
directly impact the othermicroservices. These four chosenmicroser-
vices are an accurate representation of the larger system in terms
of functionality and communication patterns. The purpose of this
experiment was to create real-world scenarios where stress condi-
tions could impact the overall performance of the microservices
ecosystem.

Additionally, it was crucial to introduce realistic user traffic to
the services. To achieve this, we employed locust26, a tool designed
to simulate user behaviour. In this regard, we simulated interactions
from 100 simultaneous users throughout the experiment. We deter-
mined that this number was adequate for introducing some load to
the services without causing undue stress while also ensuring that
they were not left idle. Each simulated user engaged in a specific
sequence of actions, including logging in, browsing the product
catalogue and picking 1-9 products, viewing the cart, and finally
ordering the products.

6.1.2 Zahori. To effectively utilize Zahori for the experiment,
some minor adjustments were required. Specifically, Selenoid and
Zahori-server were seamlessly integrated with stress-ng. Unlike
Sockshop, Zahori is designed to cater to a limited number of users at
a time, as its main objective is to automate processes and repetitive
24https://wiki.ubuntu.com/Kernel/Reference/stress-ng
25https://hub.docker.com/r/lillywu/sock-shop
26https://locust.io/

9

tasks. To achieve this, an Automated Process was initiated via an
API call, which involved conducting a search on Wikipedia and
gathering logs, screenshots, documents, and videos while simul-
taneously generating a Fibonacci sequence for four minutes. This
process was executed during each normal and anomalous trial and
enabled the creation of more realistic scenarios, as Zahori services
remain mostly idle when a process is not running.

6.1.3 Anomaly Detection. The software solution PyCaret is
utilised for anomaly detection. It is an open-source, low-codemachine-
learning library in Python that automates the process of anomaly
detection. PyCaret offers different modules for various specialised
applications, including anomaly detection. Three algorithms are
available in pycaret to perform anomaly detection on system met-
rics, namely, Local Outlier Factor (LOF)27, k-Nearest Neighbors
(KNN)28, and Isolation Forest29. For our research, a separate model
is trained for each algorithm using the data from normal, non-
anomalous runs of the experiment.

When analysing the provided dataset, PyCaret only provides
one indication regarding the presence of an anomaly for each entry
in the dataset. There are no hints about the anomaly status of
individual columns in the dataset, which, in our case, refer to the
combination of each application service and the metric captured
for them. For this reason, a model for each algorithm is trained on
each column of the normal dataset. The trained models are stored
locally and later utilised to perform AD on the anomalous datasets
captured during the experiment execution.

Each data entry in the provided dataset is analysed by the Py-
Caret model, resulting in two newly created columns that PyCaret
uses to indicate the anomalous status of that data entry, namely
"Anomaly" and "Anomaly Score". The former column is an indica-
tion of whether a data entry is considered to be anomalous (value of
1) or not (value of 0). The latter is the score assigned to a data entry,
based on which the decision is made as to whether it is anomalous.
This is a continuous value that can take a value from 0 up to 1, with
higher values indicating a stronger suggestion that a specific data
entry is considered anomalous. The anomaly status assigned by
PyCaret is compared to the anomaly status signified in the ground
truth to analyse the performance of AD on energy consumption
data.

6.1.4 Root-Cause Analysis. For RCA, the RCD tool is employed,
designed and developed by Ikram et al. [9]. This localised causal
discovery algorithm identifies the root cause of anomalies detected
in system metrics. The algorithm pinpoints the root causes without
learning the causal structure of the complete graph. RCD is run
on a certain dataset of captured system metrics only when the
execution of AD results in the discovery of anomalies in the dataset.
Then, the same dataset is used as input for RCD which analyses
the data and generates a ranked list of the most probable causes
of the detected anomalies. During the assessment of RCA’s ability
to detect the root causes of energy anomalies, this list is used to
derive the performance metrics for RCA, as described in 5.

27https://www.sciencedirect.com/topics/computer-science/local-outlier-factor
28https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-
biology/k-nearest-neighbor
29https://www.analyticsvidhya.com/blog/2021/07/anomaly-detection-using-
isolation-forest-a-complete-guide/

6.1.5 Energy Consumption. As this study aims to explore the
ability of anomaly detection and root-cause analysis processes to
handle energy consumption data and detect energy anomalies and
the root causes of these anomalies, this information must be avail-
able at the beginning of the experimentation. However, the metrics
that SmartWatts produces are in the form of power consumption,
measured in watts. Thus, it is necessary to translate the power
metrics to energy metrics measured in joules, or watts per hour.
This is done by multiplying the average power consumption of the
system over 5 seconds with the number of seconds over which the
average was computed (i.e. 5 seconds) to get the average energy
consumption for periods of that length for the duration of each
experiment trial. This action was conducted before any other data
pre-processing and analysis was performed. All following oper-
ations were performed using the data coming out of this phase.
The original data collected from the target systems, SockShop and
Zahori, are not discarded and can be used as a reference for the
initially collected power metrics.

6.1.6 Ground Truth. To create the ground truth used as the base-
line for deriving the correctness, completeness, and accuracy indi-
cators for AD and RCA, both the data collected during the normal
trials of the experiment and the trials with injected anomalies are
considered. Specifically, we calculate the average value for each col-
lected metric and service combination stored in the normal dataset.
Then, for each metric and service combination in the datasets cor-
responding to the trials with injected anomalies, we compare each
entry with the corresponding mean value from the normal data.
As described in section 5, an entry is marked as anomalous in the
ground truth when its value differs from the mean normal value by
at least the standard deviation of the metric being evaluated in the
baseline data, regardless of direction.

6.2 Setup
The experimentation that was conducted as part of the current
study was executed on an external server hosted by Green Labs 30

at the Vrije University of Amsterdam. The server is equipped with
an Intel(R) Xeon(R) Silver 4208 CPU@ 2.10GHz, 376GB of RAM and
operated on Ubuntu 22.04.2 LTS operating system. Furthermore,
the pipeline was developed using Python version 3.9.17, and the
subjects utilised Docker version 24.0.2.

6.3 Execution and Measurement
The hardware utilisation for each service of each target applica-
tion during the experiment runs is captured using the Prometheus
monitoring solution. The services deployed as Docker containers
are measured across different metrics, namely CPU usage in sec-
onds, memory usage in bytes and filesystem reads in bytes. Along
with these metrics, the power consumption of each service during
experiment trials is also captured. After completing all the experi-
ment runs, the power consumption values are converted to energy
consumption values to accommodate the needs of this study in
answering the research questions defined in 4.

For each trial, we either select one of the application services to
stress or no service is injected with an anomaly for the duration of

30https://s2group.cs.vu.nl/pages/greenlab/

10

the trial. This is done at random. The data gathered during trials
that do not include any injected anomalies are used to construct
the ground truth to analyse the results that AD and RCA produce.
When a service is selected to be stressed, three available stressors
can be executed, one for each type of hardware utilisation metric
captured for the application services. The stress types target each
application service’s CPU, memory, or file system. Only one stress
type and one service is stressed at a time.

To enhance the accuracy of each new trial, we have implemented
a system that allows for a 4-minute break between experiment trials.
This pause eliminates any previous stress-inducing operations be-
fore a new trial commences. Additionally, constantly stressing the
hardware components can cause the server hosting the application
to produce more heat, leading to increased power usage over time.
However, allowing the system to rest between runs gives it enough
time to cool down and return to its usual temperature and power
consumption levels before starting a new trial. This ensures that the
data we collect remains reliable and accurate. The duration of this
break was found to be the shortest amount of time that leads to no
residuals from previous experiment trials, after exploring various
duration options. This way the experiment data remain unaffected
in this aspect, while keeping the experiment execution time short.

6.4 Pipeline
Here, we provide an overview of the various steps involved in the
AD and RCA pipeline created for and utilised in this study, along
with the expected inputs and outputs that every step of the pipeline
should have. The pipeline is split into 4 phases, namely Preparation,
Context Elicitation, Processing, and Assessment. The process flow
graph of the pipeline is shown in Figure 5.

The words technique and tool are used interchangeably. They
are used to refer to the solution that is employed to process and
analyse the data the system produces and that uses such data to
perform anomaly detection or root cause analysis (or both) on it.
As such, the pipeline described in this subsection can incorporate
solutions for anomaly detection, root cause analysis or both.

6.4.1 Preparation. In this phase, the target system is analysed
and the appropriate solution is selected and prepared accordingly.
System Classification The user identifies aspects of the system
that are essential for the selection of the appropriate technique.
Such characteristics include the level of monitoring artefact the
system is able to produce (logs, traces, metrics) when executed and
the type of the system configuration, which, in this study, consists
of Docker.
Technique Selection Once the system has been classified, it is
necessary to analyse the available techniques and choose the one
that most appropriately matches the identified characteristics of
the system and best suits the objectives of the system adminis-
trators. This depends on the granularity of the produced artefact
(application- or service-level) and the type of the discovered anom-
aly (functional or performance) that the administrators require, but
also the classification and the characteristics of the system. For this
study, the focus is set on energy-related anomalies.
Technique Setup Before the selected tool can be used it is neces-
sary to prepare the tool based on the author’s instructions. This

setup is highly dependent on the chosen technique but may consist
of installing different dependencies, setting up log traces, etc.

6.4.2 Context Elicitation. In this phase, the necessary data to
tune the behaviour of the selected AD or RCA solution to the cur-
rent setup are gathered and provided as input to the tool.
Acquisition of Required Input The choice of tool in a previous
step will determine the specific data requirements based on the
input parameters the tool requires, such as runtime and previous
system logs, previous system traces, (Kubernetes) application de-
ployment, test cases, workload generators, previously monitored
system KPIs, failure injectors, application specifications, anomaly
patterns and SLOs. This data is used by the tool to obtain the ground
truth, which provides an accurate depiction of the microservice
system’s state and behaviour during normal or abnormal opera-
tions, and is crucial for identifying anomalies and their root causes.
This input data and the ground truth are generated and stored as
a system artefact. In particular, the system artefact is a set of data
consisting of the ground truth for the behaviour of the system under
normal or abnormal conditions (as needed by the employed solu-
tion), and any additional input parameters that the tool requires.
Technique Tuning Upon acquiring the system artefact it is nec-
essary to tune the tool to create a ground truth in the form of, for
example, dependency or causality graphs. This information is later
used, in step Analysis of Produced Data, by the employed solution
to determine whether a system is behaving anomalously or not.

6.4.3 Processing. After the solution has been tuned according
to the needs of the underlying system and of the system operators,
metrics regarding the operation of the system are gathered while
the system accepts traffic. Such metrics could take the form of
hardware utilisation data, energy consumption data, or any other
type of metric that is required for the analysis of the system for
anomalies and their root causes.
System Execution The operation and running of the selected
software system. This means that the software abandons its stale
state and starts processing workload going into execution state. At
the same time, the appropriate monitoring tools are deployed and
configured to continuously collect the required data, according to
the technique that has been selected.
System Monitoring in Real Time While the system is in the
execution state, it is monitored continuously and several metrics
(e.g. CPU usage, power consumption, etc.) are recorded and stored
into a monitoring artefact to be passed for further analysis. Other
than metrics, the monitoring artefact consists of logs or traces the
system produces while it is in execution state. Monitoring can also
be performed in cycles, with each cycle lasting a predetermined
duration, in case of offline analysis for anomaly detection or root
cause analysis. For example, one such cycle could last 60 minutes,
after which the monitoring artefact is taken offline for further
processing and analysis. The monitoring of the target systems in
this study is conducted using the tools Prometheus, Grafana, and
SmartWatts.

6.4.4 Assessment. In this last phase of the pipeline, the collected
system metrics are analysed by the chosen AD or RCA tool, after
which they generate certain results. If necessary, the operators of
the process intervene to review and evaluate the results.

11

Figure 5: Data-Driven Anomaly Diagnosis: Semi-automated Pipeline for Anomaly Detection and Root-Cause Analysis

Analysis of Produced Data The data collected from the system
monitoring and the system artefacts (coming from the Input Analy-
sis step) are combined and provided to the selected technique. The
solution then performs an analysis and provides a verdict which
can be either a set of candidates of potential anomalies or root
causes for an anomaly. This process can take place either online -
while the system is running - or offline - when data from a previous
system execution cycle is being processed.
Assessment of ResultsWhen a tool produces multiple candidates
of anomalies, for anomaly detection, or root causes, for root cause
analysis, it can be challenging to determine which one is the most
likely anomaly or cause. This is where human intervention comes
into play. The system administrators must carefully review each
candidate and evaluate its relevance to the system. Ultimately, the
goal is to identify the anomaly that happened or the root cause
of an observed anomaly and take appropriate corrective action to
address it.

6.5 Anomaly Detection Models
To conduct anomaly detection in our research we employ 3 al-
gorithms that are available within the utilised solution, namely
PyCaret. Here, we provide the basics of each of these algorithms.

6.5.1 Local Outlier Factor (LOF). LOF is a model used for anom-
aly detection. It works by comparing the density of data points in
a given data set. It identifies outliers by measuring how isolated a
data point is compared to its neighbors – if a point has significantly
lower density around it, it’s likely an outlier.

6.5.2 k-Nearest Neighbors (KNN). This is a simple and ver-
satile algorithm used for classification and regression tasks. For
classification, it assigns a label to a data point based on the majority
class of its nearest neighbors. For regression, it predicts a value

by averaging the values of its closest neighbors. The ’k’ parameter
represents the number of neighbors considered.

6.5.3 Isolation Forest (IForest). Isolation Forest is an anomaly
detection algorithm that separates anomalies (outliers) from normal
data points by building a random forest of decision trees. Anomalies
are easier to isolate and require fewer splits to be separated from
the majority of data points. By measuring the average path length
of a data point in the forest, anomalies can be identified – shorter
paths indicate potential anomalies.

7 RESULTS
In this section, we present the outcomes of the analysis conducted
on the correctness, completeness, and accuracy of the anomaly de-
tection and root-cause analysis processes. These results are derived
from the performance of the AD and RCA processes on the metrics
collected during all the trials of the experiment. For AD, the metrics
refer to the adjusted versions of them, regardless if this is explicitly
stated or not. Moreover, these performance metrics serve as the
basis for addressing the research questions defined in Section 4.

7.1 Data Exploration
The first step in addressing the research questions involves an in-
spection of the collected data to shed light on their quality. This
analysis helps give a better insight into the underlying characteris-
tics of the dataset and informs the subsequent stages of the research
process.

In Figures 6 and 7, we observe the resource utilisation during
the stressing of services for both SockShop and Zahori. In our case,
the duration of the stress test was 300 seconds (5 minutes). The
first noticeable observation is an initial spike in CPU and memory
utilisation within the first few seconds of the test. This spike is

12

present because the invocation time of the stressor, which in this
case is the anomaly being injected, coincides with the moment
when we begin collecting data from the target system.

Furthermore, it is observed that there is no tangible surge in the
file system utilisationmetrics when introducing an anomaly into the
file system. Interestingly, the file system utilisation for the payment
and catalogue services in SockShop appears to remain constant.
Nevertheless, the reason for this could be attributed to varying base
levels for file system reads that take place during normal system
operations. Consequently, when the stressor is introduced, the file
system utilisation fluctuates in line with the typical file system
usage.

When examining the data presented in Figures 8 to 10, a clear
trend emerges between the resource utilisation and energy con-
sumption patterns for each of the tested services within the Sock-
Shop application. Notably, the figures provide a visual represen-
tation of the relationship between these two critical aspects. An
intriguing observation is the noticeable surge in energy consump-
tion concurrent with the occurrence of anomalies. This suggests
that anomalies may trigger higher energy usage, but further analy-
sis reveals a more complex pattern. While some instances of high
energy usage coincide with anomalies, there are also instances
where resource utilisation remains stable despite fluctuations in
energy consumption. This suggests that there may be additional
factors at play beyond just resource utilisation. Similar patterns are
observed when Zahori is considered, as shown in Figures 11, 12,
and 13. Further studies could be conducted to shed light on this
situation and these patterns.

7.1.1 Anomaly Detection. We utilised three algorithms, namely
Local Outlier Factor (LOF), k-Nearest Neighbors (KNN), and Iso-
lation Forest (IF), to classify our data entries as anomalous or not.
The adjusted precision, recall, and F1-score for each of these algo-
rithms across all the collected data for the SockShop experiment
are listed in Table 1. The same metrics for the Zahori experiment
are presented in Table 2. In this case, we count and sum up the TP
and FP in the datasets collected from each experiment trial, for each
application separately, and calculate the performance metrics using
the final count. Table 3 presents descriptive statistics about the
same metrics, this time taking into account each dataset retrieved
during the data collection phase of the research separately, instead
of examining all the data together as a whole. These results give us
insight into how well the AD algorithms can detect anomalies in
energy consumption data in both research-oriented and production-
level applications. Moreover, since our study’s primary focus is to
evaluate the overall performance of the anomaly detection process,
Tables 1, 2, and 3 also provide an overview of these metrics across
all the algorithms used, showing the average performance that AD
had on each examined system.

Looking at Table 1 we observe that in the case of SockShop the
Local Outlier Factor model exhibited superior performance in terms
of precision in detecting anomalies within energy consumption
metrics, compared to the other two employed models, namely IF
and KNN. The key factor contributing to the Local Outlier Factor’s
superiority was its ability to maintain a particularly low number
of false positives (FP) compared to true positives when identifying
anomalous sections. Specifically, the LOF model made only 182

Figure 6: Zahori: Resource Utilisation of Each Service During
Hardware Stress Testing

13

Figure 7: SockShop: Resource Utilisation of Each Service During Hardware Stress Testing
14

Figure 8: SockShop: Comparison of Energy Consumption
and CPU Utilisation

Figure 9: SockShop: Comparison of Energy Consumption
and Memory Utilisation

Figure 10: SockShop: Comparison of Energy Consumption
and File System Utilisation

Table 1: Anomaly Detection Performance Metrics per Model
and Overall - SockShop

Model Precision Recall F1-Score

Isolation Forest 0.934 0.208 0.341
k-Nearest Neighbours 0.954 0.338 0.499
Local Outlier Factor 0.97 0.36 0.525

Overall 0.956 0.302 0.459

Figure 11: Zahori: Comparison of Energy Consumption and
File System Utilisation

Figure 12: Zahori: Comparison of Energy Consumption and
File System Utilisation

incorrect classifications as false positives for SockShop. On the
contrary, the IF model reported 242 false positives, and the KNN
model falsely detected anomalies on 271 occasions.

15

Figure 13: Zahori: Comparison of Energy Consumption and
File System Utilisation

Table 2: Anomaly Detection Performance Metrics per Model
and Overall - Zahori

Model Precision Recall F1-Score

Isolation Forest 1 0.414 0.585
k-Nearest Neighbours 1 0.472 0.641
Local Outlier Factor 1 0.639 0.78

Overall 1 0.508 0.674

Furthermore, we analysed the number of true positives (TP) for
each model. In the case of SockShop, the LOF model demonstrated
approximately 32.5 times more true positives than false positives. In
comparison, the IF model had a ratio of a little over 14 times, while
the KNN model’s ratio was approximately 20 times. These findings
are reflected in the precision values for each model, providing
additional support to the conclusion that the Local Outlier Factor
model outperforms both IF and KNN in terms of precision.

Similarly, when evaluating recall and F1-score, the Local Outlier
Factor model displayed the highest values, with a recall of 0.36
and an F1-score of 0.525. In comparison, the adjusted recall and
F1-score values for Isolation Forest are 0.208 and 0.341. The KNN
model yielded a recall of 0.338 and an F1-score of 0.499, having the
second best performance out of the 3 considered models.

It is evident that all the considered AD models exhibited rela-
tively low performance in completeness and accuracy. This can be
attributed to the significantly high number of false negatives (FN)
across all models. The number of false negatives is approximately
1.5 times greater than the number of true positives for both LOF

Table 3: Summary of Descriptive Statistics for Anomaly De-
tection

Metric Precision
Subject SockShop Zahori

Algorithm iforest knn lof iforest knn lof
Min 0.0 0.0 0.0 0.0 0.0 0.0
Max 1.0 1.0 1.0 1.0 1.0 1.0
Mean 0.44 0.615 0.695 0.517 0.59 0.773
SD 0.493 0.483 0.458 0.5 0.492 0.419
CV 1.12 0.785 0.659 0.967 0.834 0.542

Metric Recall
Min 0.0 0.0 0.0 0.0 0.0 0.0
Max 1.0 1.0 1.0 1.0 1.0 1.0
Mean 0.329 0.465 0.506 0.466 0.532 0.701
SD 0.425 0.437 0.427 0.476 0.473 0.42
CV 1.292 0.94 0.844 1.021 0.889 0.599

Metric F1-Score
Min 0.0 0.0 0.0 0.0 0.0 0.0
Max 1.0 1.0 1.0 1.0 1.0 1.0
Mean 0.356 0.502 0.552 0.481 0.55 0.724
SD 0.431 0.437 0.42 0.478 0.473 0.412
CV 1.211 0.871 0.761 0.994 0.86 0.569

and KNN models, while it is nearly 4 times larger in the case of the
IF model.

When examining the outcomes for Zahori, the situation does
not change a lot. The precision values for all the models employed
for anomaly detection are interestingly high, with a value of 1
in each case. The high precision observed in the AD results for
Zahori, as shown in Table 2 can be rationalised by the non-existent
amount of FP. All the AD models managed to avoid incorrectly
marking non-anomalous segments as anomalous, an astonishing
performance that inspires a high level of confidence on the results
that AD generates.

In terms of recall, the ranking of the algorithms for Zahori is the
same to the findings for SockShop. LOF exhibits the highest recall
value of 63.9%. Isolation Forest continues to exhibit the weakest
performance, registering a recall score of 41.4%. KNN now stands
at 47.2% for adjusted recall in the case of Zahori. Subsequently,
the overall recall for AD in Zahori is greater compared to that
of SockShop, as it now stands more than 20% higher. Concerning
accuracy and adjusted F1-score, the overall effectiveness of AD
is, again, greater to that observed for SockShop, with the overall
adjusted accuracy standing at 67.4% for Zahori and hovering around
46% in the case of SockShop.

Additionally, as shown in Table 3, when the individual datasets
are considered, the LOF model demonstrates the best mean per-
formance across all metrics, with 69.5% and 77.3% mean adjusted
precision, 50.6% and 70.1% mean adjusted recall, and 55.2% and
72.4% mean adjusted F1-score for SockShop and Zahori each time
respectively. This model has also the least dispersion across all per-
formance metrics, as shown by the standard deviation (SD) and the
coefficient of variation (CV). That said, the dispersion of the data is
relatively to extremely high for the results of all of the AD models
employed. This is shown by a CV value that is consistently greater

16

Figure 14: Distribution of precision for every anomaly detec-
tion model - SockShop

than 50% for all models and systems and a SD that is hovering
around the 45% mark.

The boxplots in Figures 14-19 illustrate the distribution of all
the AD models used in our research across all of the datasets col-
lected in the experimentation for SockShop and Zahori. These visual
representations complement the descriptive statistics provided in
Tables 1, 2, and 3. Looking at these boxplots we confirm the inferior
performance AD had when applied on metrics gathered from the
experimentation on Zahori. Furthermore, we observe that the Isola-
tion Forest model has consistently poor performance, weaker than
the other AD models employed, with its high value for F1-score
being an outlier and the median for this metric hovering around
0%. Moreover, the performance of LOF is kept always at high levels,
with the mean being consistently lower than the media, across all
metrics. The low values for LOF, reported in Table 3 for Zahori are
only outliers and do not comprise a large portion of the computed
performance metric data. This indicates a negative skewness in the
data distribution that correspond to the performance metrics for
each individual dataset, where there are some lower values that
are impacting the mean while the majority of the data is clustered
around higher values. This suggests that LOF is capable of detecting
anomalies in energy consumption data effectively

7.1.2 Root Cause Analysis. When an anomaly is detected in the
energy consumption metrics gathered from an experiment execu-
tion, the process of RCA is initialised. This includes all the times
AD determines an anomaly is present, regardless if the detection
was a TP or FP. As discussed in Section 6, the tool used for this
operation is RCD. The performance of this phase is evaluated using
the metric 𝑃@𝑘 (precision at k) for levels 1, 2, and 3. Additionally,
the average precision across all considered precision levels, up to
level 3 (𝐴𝑃@3), is taken into consideration to assess RCD’s, and
more generally RCA’s, effectiveness in detecting root causes of
energy consumption anomalies.

As shown in Table 4, the precision levels of RCD for the Sock-
Shop experiment are relatively low across all precision levels, never

Figure 15: Distribution of recall for every anomaly detection
model - SockShop

Figure 16: Distribution of F1-score for every anomaly detec-
tion model - SockShop

exceeding the 0.5 mark. As expected, the highest value is observed
for level 3 (𝑃@3), with the precision having a value of 0.452. This
means that in more than 50% of the cases, RCD fails to identify the
true root cause of the injected anomalies in the top 3 predictions
that it makes. This value suggests that RCD, and, in this case, root
cause analysis in general, is not very reliable in identifying true root
causes and employing this tool would result in a large number of
irrelevant predictions. This conclusion becomes even more relevant
when a lower number of top RCA predictions are considered. The
precision at level 1 (𝑃@1) yields a value of 0.412, with 593 correct
top-1 predictions out of the 1440 datasets that were examined, and
𝑃@2 has a value of 0.443. It is obvious and expected, that at higher
levels of precision, the value of the metric increases. This increase
is minor, though, and does not suggest a strong ability to detect

17

Figure 17: Distribution of precision for every anomaly detec-
tion model - Zahori

Figure 18: Distribution of recall for every anomaly detection
model - Zahori

true root causes with confidence as the number of considered pre-
dictions increases. Overall, the average precision at level 3 (𝐴𝑃@3)
exhibits a value of 0.436. This imprints the average performance
that RCA exhibits in identifying root causes correctly.

Regarding the results concerning the experiment in which Zahori
is the target application, the RCA results exhibit lower values across
all levels of precision. Now, more than 60% of the real root causes
of the anomalies detected in the system fail to be pinpointed within
the top 3 predictions generated by RCD. Specifically, P@3 stands at
0.384, with only 279 correct predictions out of the total 726 datasets
that were examined. Predictably, for lower levels of precision, the
associated values decrease. At the second precision level (P@2), the
value is recorded at 0.375 with 272 correct identifications. Similarly,
at the first precision level (P@1) the value is 0.358 reflecting 260
correct root cause identifications within the overall pool of 726

Figure 19: Distribution of F1-score for every anomaly detec-
tion model - Zahori

instances. As a result, the average precision (AP@3) stands at a low
value of 0.372.

That said, achieving a high P@1 value may be challenging in
many real-world scenarios, especially in complex systems or situ-
ations with multiple contributing factors to a problem. There the
P@1 that RCD exhibits can still be considered reasonably good,
indicating that the analysis is successfully identifying relevant root
causes in a significant number of cases. Furthermore, Figures 20
and 21 show the performance that RCA had for all combinations
of anomaly injected and anomaly (or stress) intensity across all
system services that were injected with anomalies, for SockShop
and Zahori, respectively. Specifically, these bar plots show the num-
ber of times RCD included the correct root cause in the top k, for
all cases of k we considered, namely k values equal to 1, 2, and
3. In this way, we explore what types of system anomalies can be
appropriately identified and in which cases effectiveness is weak.

Looking at these graphs, it is prominent that a large portion
of the root causes that correspond to CPU anomalies are detected
correctly, regardless of the intensity of the anomaly. On the contrary,
RCA is practically unable to find root causes that are associated
with injected anomalies in the file system of the target service. In
this case, regardless of the intensity level, RCD was unsuccessful in
identifying any of the correct root causes. Finally, the root causes
that are associated with memory anomalies tend to be correctly
detected at a considerable rate, however, far less compared to the
CPU-associated root causes. These findings are very similar for
both examined applications, SockShop and Zahori. Moreover, we
observe that the intensity level does not make a big difference in the
number of correct root causes that RCA detects, rather it is the type
of resource that is injected with an anomaly, and that constitutes
the root cause, that is the differentiating factor in terms of the
RCA performance. RCA tends to perform very well for root causes
associated with CPU anomalies, less so for memory anomalies, and
poorly for file system-related anomalies.

18

Table 4: Root Cause Analysis Precision per Level and Overall
- SockShop

Metric Correct Detections Value

P@1 593 0.412
P@2 638 0.443
P@3 651 0.452
AP@3 - 0.436

Table 5: Root Cause Analysis Precision per Level and Overall
- Zahori

Metric Correct Detections Value

P@1 260 0.358
P@2 272 0.375
P@3 279 0.384
AP@3 - 0.372

Figure 20: Quantity of correctly detected root causes by RCA
- SockShop

8 DISCUSSION
In this section, we elaborate on our research questions using the
results presented in Section 7. The implications for all interested
parties are outlined, too.

RQ1:What is the effectiveness of anomaly detection techniques
in detecting energy consumption anomalies in microservice-
based applications?

Based on our empirical results, the performance of the AD pro-
cess in detecting anomalies in energy consumption data in terms of
precision is observed to be high, with a value of around 95%. This
indicates that AD has a low rate of false positives. It also suggests
that the AD process is effective in identifying anomalies in energy
consumption data with minimal false alarms. In other words, when

Figure 21: Quantity of correctly detected root causes by RCA
- Zahori

anomaly detection flags an instance of energy metrics as an anom-
aly, it is more likely to be a true anomaly rather than a false alarm.
Additionally, subsequent calls to the RCA process and for human
intervention are unlikely to be triggered when they are not needed,
refraining from binding valuable resources to perform RCA or time
for human operators to investigate the system.

Furthermore, the recall and F1-score values for all the considered
models are relatively low, thus the overall AD values for these
metrics take relatively low values as well, with 0.302 (SockShop)
and 0.508 (Zahori) for recall and 0.459 (SockShop) and 0.674 (Zahori)
for F1-score. This indicates that when anomaly detection operates
on energy consumption data it is conservative in its approach,
leading to a high level of confidence when it flags an instance as
an anomaly (because of high precision levels), but it may lack the
ability to detect a broader range of anomalies present in the data.
As a result, the use of AD on energy data needs to be accompanied
by other techniques that can detect energy issues to boost recall
and accuracy by reducing the number of false negatives.

Additionally, we observe that the coefficient of variation is re-
markably high for all three metrics and all three AD models em-
ployed. This is the case for both target systems, signifying signifi-
cant variability, where the data points are widely dispersed from the
mean. This can suggest a high level of uncertainty or inconsistency
in the results that AD generates across individual datasets.

Overall, we suggest that practitioners, including system oper-
ators, make use of anomaly detection tools to discover when the
energy consumption of a system deviates from its normal situation
and patterns. The results that AD generates are reliable and accu-
rate, as shown by the significantly high adjusted precision levels
we observed during analysis in Section 7. Nevertheless, anomaly
detection techniques might not be enough to detect a substantial
portion of all the energy consumption anomalies a system might
experience. The high number of false negatives, leading to low
levels of recall and F1-score, means that many cases of anomalous
segments are overlooked by AD. For this reason, we encourage

19

practitioners to complement the use of AD tools with other solu-
tions capable of detecting anomalies and deviations in collected
energy consumption metrics.

The previously discussed weaknesses that AD shows make the
need for further research and experimentation regarding AD solu-
tions that are capable of detecting anomalies in energy consumption
data prominent. The findings of this study can be used as a first
indication of the current status of the AD process in regards to
energy metrics, on which future studies can be based and expand
from.

RQ2: What is the effectiveness of root cause analysis tech-
niques in identifying the root causes of energy consumption
anomalies in microservice-based applications?

Regarding root cause analysis, the poor results that RCD exhibits,
presented in Section 7, indicate a weak RCA solution in general
or a poor performance when incorporating energy consumption
data to identify the sources of a system anomaly. According to
Ikram et al. [9], RCD outperforms other popular root cause analysis
solutions. In their evaluation of RCD, Ikram et al. utilised solely
hardware utilisation metrics. As a result, we suggest that RCD, and
subsequently RCA, cannot incorporate energy consumption data
very efficiently. This is obvious when we consider that in both ex-
periments, more than 50% of the time RCD failed to identify the real
cause of anomalies (i.e., the application service stressed) in system
metrics. It is essential to note that the conclusions regarding RCA
might not be representative of the currently available techniques
for RCA, as only one technique has been examined. This limitation
is also addressed in Section 9. However, this is the first time such
a technique is applied to energy consumption data, making these
results a good starting point for further exploration.

We recommend that system operators and other practitioners
refrain from using RCA solutions to detect the root causes of anom-
alies in energy consumption metrics gathered from microservice-
based applications. The findings of our analysis show that more
often than not, the results RCA generates are not trustworthy and
the predictions made might not include the actual root cause of
an anomaly in the energy consumption metrics of a system. An
exception to this statement is the case in which the root cause is
related to CPU anomalies, as discussed in Section 7. However, this
is not enough to justify the use of RCA on system metrics, as the
CPU is only one of the various hardware components that are used
by application services to perform their functionality, all of which
might experience anomalies in their utilisation. Instead, practition-
ers should turn to other types of solutions to achieve the goal of
detecting root causes of energy anomalies, until improvements in
the ability of RCA on energy consumption data have been made.

Furthermore, we found the field of root cause analysis on energy
consumption data and related anomalies to be mostly unexplored.
No particular studies have focused on using energy consumption
metrics for such processes. Moreover, the difficulties in the moni-
toring of microservice-based systems, the growing use of this style
of application development and deployment and the potential ben-
efits of promptly and effectively detecting energy anomalies in
such systems enhance the need for solutions specialised in energy
consumption data. In future studies, researchers should focus on
achieving this objective, while at the same time minimising the

overhead for deployment of such solutions on target systems. This
way their usage will be encouraged and the results can be helpful
for usage by practitioners.

Overall, both anomaly detection and root cause analysis exhibit
poor performance in accurately detecting a large percentage of
anomalies or their root causes, according to data collected in this
study. This is despite the high precision that AD yields, which
enhances the trustworthiness of the generated results. This could
result in systems with anomalies that are left unattended and un-
treated for long periods before they become apparent either by
system performance degradation or even the execution of AD on
another type of metrics, such as hardware utilisationmetrics. This is
an indication that both tools are potentially not good on their own
and their use should be complemented or substituted by other tools
that conduct the same functionality on non-energy data or comple-
mentary actions that increase discovery of issues in microservice-
based systems. Thus, system operators should not rely solely on
energy consumption metrics to promptly and accurately discover
issues in their systems. Moreover, the deployment of AD and RCA
tools that utilise energy metrics might introduce an overhead that
does not justify any related expenses, both financially and time-
wise. For this reason, researchers need to conduct further studies
and development of anomaly detection and root cause analysis
tools that are capable of performing adequately well to justify their
employment and promote sustainability by supporting the function-
ality of AD and RCD processes to integrate energy consumption
data. The findings outlined in the present paper can be used as the
foundation and the starting point of such research and analysis.

9 THREATS TO VALIDITY
In this section, we aim to assess the overall reliability and appli-
cability of the experiment results by examining potential threats
to their validity. To achieve this, we adopt the threat classification
approach introduced by Cook and Campbell (1972) [41].

9.1 Internal Validity
This category comprises threats strongly related to the design and
execution of the experiment.

9.1.1 History. The paper presents the implementation of two
experiments. The first experiment utilised a medium-complexity
research-oriented reference application called SockShop, while the
second experiment employed a industrial system named Zahori.
Both experiments followed the same design, which included ran-
domisation of the order of the trial execution, spreading the effects
of uncontrolled factors across different subjects and treatments.

In the experiment involving SockShop no interruptions occurred
after the experiment began, ensuring the reliability and integrity of
the results were not compromised. However, in the Zahori experi-
ment, the experiment was disrupted several times throughout its
run. The cause of these interruptions was the crash of the Smart-
Watts tool, which runs alongside the applications to measure their
power consumption. It was observed that the rapid creation of mul-
tiple containers, essential for Zahori’s operation during process
execution, led to the SmartWatts tool crashing. The exact reason be-
hind this phenomenon has yet to be identified. These interruptions
have introduced unreliability within the environment and, for the

20

experiment, have introduced a selection bias as the failed attempts
have been ignored. As soon as the script detected SmartWatts had
crashed, we reset its functionality and continued the experiment
from its last successful execution.

9.1.2 Reliability of Measures. The are no environmental factors
that could interfere with the measurements that are collected from
the target applications. Before the experiment started, we ensured
that no other services or intensive processes were running, apart
from the necessary OS processes and the monitoring tools that
capture hardware utilisation and power consumption. This means
that all the metrics for the application services reflect the actual
utilisation of the services and are not affected by external processes.
The interference of the monitoring tools is considered negligible
and always the same across treatments and systems. Moreover,
the same stress tests were applied to all the services, for the same
duration and under consistent application traffic.

To avoid any potential periodic interference, the combination
of services stressed, type of stress and stress test intensity was
randomly selected for each run. As a result, any factors that could
affect the experiment results are minimised.

9.2 External Validity
Threats to external validity restrict the level of generalisability of
the experiment results.

9.2.1 Interaction of selection and treatment. For the first ex-
periment conducted for this study, we selected to use one research-
oriented application to refine and validate the reliability of the
experiment design and the process that is followed to capture ap-
plication service metrics. The second part of the study involves
the employment of an industrial system in order to generalise our
findings on a real-world application and systems developed with
external end-users in mind. This setup enhances the reliability and
generalisability of the results and findings of this research.

It is essential to note that both systems are not excessively large
or complex, which might limit the relevance of our study’s results
for more extensive, distributed systems with intricate interactions
between services [42]. To address this limitation, future research
could explore the application of our experiment design and process
on more substantial and complex systems to validate or refute our
findings for applications of a larger scale. That said, this study’s
findings apply to a wide range of microservice-based applications
that do not rely on extremely complicated architectures and service
interactions.

9.2.2 Interaction of setting and treatment. In order to mitigate
threats to the validity of our findings stemming from the environ-
ment in which the systems were deployed and the experiments
were run, we eliminated all non-necessary processes running on
the server that hosts our applications before executing the exper-
iments. Both system employed in this study were deployed on a
Unix-based OS to approximate real-world conditions, as Unix is
one of the most popular OS to deploy cloud applications on [43].
Moreover, predictable traffic levels were directed towards the ap-
plication services, emulating real-world application traffic. In the

case of SockShop, a locust31 script generates traffic to specific end-
points of the application that affect most other connected services.
Regarding Zahori, a small process is run repeatedly while system
services are stressed. The stress of application services, which leads
to anomalies in the metrics, is achieved using the same stressor
for the same type of stressing, i.e. CPU, memory and file system
stressing, every time.

9.3 Construct Validity
Factors that threaten the construction of the experiment constitute
threats to the construct validity.

9.3.1 Inadequate pre-operational explication of constructs.
Applying the GQM approach, we laid the groundwork for our re-
search by establishing its constructs even before the execution
phase. This early definition of the objective, research questions,
and measurement methods provided a solid basis for subsequent
steps. Furthermore, in the experiment planning stage (Section 5),
we determined the research subjects, identified the dependent and
independent variables, and outlined the treatments for our factors
in the study. By adhering to the GQM approach, we ensured a clear
and well-defined framework for designing and operating the ex-
periments and collecting relevant measures to answer our research
questions.

9.3.2 Mono-method bias. To measure the power consumption
of the applications employed in this study, we used the Smart-
Watts tool. This is a software-based solution that takes advantage
of specific OS and hardware features to make a highly-accurate
estimation of the real consumption a service makes. However, the
metrics collected using this solution are not verified using another
software-based tool. Furthermore, the SmartWatts readings are
expected to be less accurate than the ones generated by hardware-
based power meters. In order to partially mitigate these concerns,
we performed 20 runs for each distinct experiment trial to verify
the reliability of the captured measures. That said, SmartWatts has
been assessed to be fairly accurate when measuring the power con-
sumption of monitored systems when compared to other power
consumption profilers [44].

Similarly, to support the feasibility of the study, a single solu-
tion was utilized for anomaly detection and another for root cause
analysis. Consequently, the conclusions drawn from this research
may only apply to the specific tools employed and might not reflect
the broader practices of anomaly detection and root cause analysis.
For this reason, further studies could explore the effectiveness of
alternative techniques and algorithms for anomaly detection and
root cause analysis. This would enhance comprehension regarding
the topic of anomaly detection and root cause analysis using energy
consumption metrics, thereby either corroborating the findings ob-
served in this study or rejecting them. That said, the algorithms
used in this study for anomaly detection are widely used solutions
for research and development purposes [45–49].

10 CONCLUSION
In this research, we explore and evaluate the effectiveness of the
processes of anomaly detection and root cause analysis applied to
31https://locust.io/

21

data related to energy consumption that microservice-based ap-
plications exhibit. Specifically, we employ two distinct systems,
SockShop and Zahori, to validate the robustness and reliability of
our findings and expand their scope to systems of varying complex-
ities and purposes. This evaluation involves computing adjusted
metrics, in particular precision, recall and F1-score for AD to gauge
its correctness, completeness and accuracy. The rationale behind
utilising adjusted versions of these metrics stems from the fact that
anomalies often occur continuously, forming contiguous segments
of abnormal behaviour rather than isolated instances. For RCA, we
assess its correctness using the precision at the top k level (P@k)
metric, a widely accepted measure for assessing ranked results.

The results derived from the analysis reveal that anomaly de-
tection can produce accurate predictions about the existence of
anomalies within metric segments. However, both AD and RCA
tend to overlook many instances that should be flagged as either
anomalous or the cause of the detected anomalies, respectively. In
particular, the average precision of AD, across all the models em-
ployed, is approximately 99%, while it exhibits an average recall of
roughly 40% and an average adjusted F1-score of 57%. Furthermore,
when evaluating the top 3 predictions generated by the RCD, and
subsequently, for our study, the RCA process, the average precision
stands at approximately 40%. Such performance levels fail to justify
the operational overhead associated with deploying and operating
AD and RCA tools that utilise energy consumption data and neces-
sitate infrastructure deployment to monitor the power or energy
usage of individual services comprising microservice-based appli-
cations. In the case of AD, the overhead is potentially increased by
the need to deploy a complementary solution to reduce the missed
anomalous cases that AD cannot detect by itself. Regarding RCA,
a completely different solution is essential at the time of this re-
search, as the results were found not sufficient to detect root causes
of energy consumption anomalies.

It is imperative that further research endeavours be undertaken
in this field to produce tools and methodologies capable of ef-
fectively utilising energy consumption metrics stemming from
microservice-based applications in a way that provides adequate
performance. This pursuit aims to establish techniques that offer
satisfactory performance, thereby fostering the adoption of such
methods and encouraging a sustainability-oriented approach to
system management. Ultimately, this would facilitate the prompt
identification of anomalies and their root causes within systems
employing the microservice architecture leading to more accurate
alerts and faster treatment of system malfunctions. Furthermore,
similar studies to this one must be conducted on new systems and
using a wider range of tools for anomaly detection and root cause
analysis. This way, a better understanding of the current state of
the field is achieved, prompting appropriate actions to be taken.

REFERENCES
[1] L. De Lauretis, “From monolithic architecture to microservices architecture,” pp.

93–96, 2019.
[2] A. Singleton, “The economics of microservices,” IEEE Cloud Computing, vol. 3,

no. 5, pp. 16–20, 2016.
[3] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, “The pains and

gains of microservices: A systematic grey literature review,” Journal of
Systems and Software, vol. 146, pp. 215–232, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121218302139

[4] J. Soldani and A. Brogi, “Anomaly detection and failure root cause analysis in
(micro) service-based cloud applications: A survey,” ACM Comput. Surv., vol. 55,
no. 3, feb 2022. [Online]. Available: https://doi.org/10.1145/3501297

[5] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth, “Performance anomaly
detection and bottleneck identification,” ACM Comput. Surv., vol. 48, no. 1, jul
2015. [Online]. Available: https://doi.org/10.1145/2791120

[6] M. Jin, A. Lv, Y. Zhu, Z. Wen, Y. Zhong, Z. Zhao, J. Wu, H. Li, H. He, and F. Chen,
“An anomaly detection algorithm for microservice architecture based on robust
principal component analysis,” IEEE Access, vol. 8, pp. 226 397–226 408, 2020.

[7] T. F. Düllmann, “Performance anomaly detection in microservice architectures
under continuous change,” Master’s thesis, 2017.

[8] I. Kohyarnejadfard, D. Aloise, S. V. Azhari, and M. R. Dagenais, “Anomaly detec-
tion in microservice environments using distributed tracing data analysis and
nlp,” Journal of Cloud Computing, vol. 11, no. 1, pp. 1–16, 2022.

[9] A. Ikram, S. Chakraborty, S. Mitra, S. Saini, S. Bagchi, and M. Kocaoglu, “Root
cause analysis of failures in microservices through causal discovery,” in Advances
in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022, pp.
31 158–31 170. [Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/2022/file/c9fcd02e6445c7dfbad6986abee53d0d-Paper-Conference.pdf

[10] J. Bogatinovski, S. Nedelkoski, J. Cardoso, and O. Kao, “Self-supervised anomaly
detection from distributed traces,” pp. 342–347, 2020.

[11] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and C. Delimitrou, “Seer:
Leveraging big data to navigate the complexity of performance debugging in
cloud microservices,” in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems, ser.
ASPLOS ’19. New York, NY, USA: Association for Computing Machinery, 2019,
p. 19–33. [Online]. Available: https://doi.org/10.1145/3297858.3304004

[12] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang, and C. He,
“Latent error prediction and fault localization for microservice applications by
learning from system trace logs,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 683–694. [Online]. Available:
https://doi.org/10.1145/3338906.3338961

[13] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen, “Cloudranger: Root
cause identification for cloud native systems,” in 2018 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 2018, pp.
492–502.

[14] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: Practical and scalable
ml-driven performance debugging in microservices,” in Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 135–151. [Online]. Available:
https://doi.org/10.1145/3445814.3446700

[15] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time anomaly
detection for streaming data,” Neurocomputing, vol. 262, pp. 134–147, 2017,
online Real-Time Learning Strategies for Data Streams. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231217309864

[16] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “Microrca: Root cause localization
of performance issues in microservices,” in NOMS 2020 - 2020 IEEE/IFIP Network
Operations and Management Symposium, 2020, pp. 1–9.

[17] A. Nandi, A. Mandal, S. Atreja, G. B. Dasgupta, and S. Bhattacharya,
“Anomaly detection using program control flow graph mining from execution
logs,” New York, NY, USA, p. 215–224, 2016. [Online]. Available: https:
//doi.org/10.1145/2939672.2939712

[18] S. Nedelkoski, J. Cardoso, and O. Kao, “Anomaly detection from system tracing
data using multimodal deep learning,” in 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD), 2019, pp. 179–186.

[19] Z. Li, Y. Zhao, R. Liu, and D. Pei, “Robust and rapid clustering of kpis for large-
scale anomaly detection,” in 2018 IEEE/ACM 26th International Symposium on
Quality of Service (IWQoS), 2018, pp. 1–10.

[20] C. Wang, K. Wu, T. Zhou, G. Yu, and Z. Cai, “Tsagen: Synthetic time series
generation for kpi anomaly detection,” IEEE Transactions on Network and Service
Management, vol. 19, no. 1, pp. 130–145, 2022.

[21] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “Causal inference techniques for
microservice performance diagnosis: Evaluation and guiding recommendations,”
pp. 21–30, 2021.

[22] B. Familiar, What Is a Microservice? Berkeley, CA: Apress, 2015, pp. 9–19.
[Online]. Available: https://doi.org/10.1007/978-1-4842-1275-2_2

[23] M. Viggiato, R. Terra, H. Rocha, M. T. Valente, and E. Figueiredo, “Microservices
in practice: A survey study,” 2018.

[24] Flexera, “State of the cloud report,” Flexera, Tech. Rep., 2019. [Online]. Available:
https://info.flexera.com/CM-REPORT-State-of-the-Cloud

[25] M. Jay, V. Ostapenco, L. Lefevre, D. Trystram, A.-C. Orgerie, and B. Fichel, “An
experimental comparison of software-based power meters: focus on cpu and gpu,”
in 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), 2023, pp. 106–118.

22

https://www.sciencedirect.com/science/article/pii/S0164121218302139
https://doi.org/10.1145/3501297
https://doi.org/10.1145/2791120
https://proceedings.neurips.cc/paper_files/paper/2022/file/c9fcd02e6445c7dfbad6986abee53d0d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c9fcd02e6445c7dfbad6986abee53d0d-Paper-Conference.pdf
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1145/3338906.3338961
https://doi.org/10.1145/3445814.3446700
https://www.sciencedirect.com/science/article/pii/S0925231217309864
https://doi.org/10.1145/2939672.2939712
https://doi.org/10.1145/2939672.2939712
https://doi.org/10.1007/978-1-4842-1275-2_2
https://info.flexera.com/CM-REPORT-State-of-the-Cloud

[26] A. Noureddine, R. Rouvoy, and L. Seinturier, “A review of energy measurement
approaches,” Operating Systems Review, vol. 47, no. 3, pp. 42–49, Dec. 2013.
[Online]. Available: https://inria.hal.science/hal-00912996

[27] G. Fieni, R. Rouvoy, and L. Seinturier, “Smartwatts: Self-calibrating software-
defined power meter for containers,” in 2020 20th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Internet Computing (CCGRID). Melbourne, Australia:
IEEE, 2020, pp. 479–488.

[28] M. Jay, V. Ostapenco, L. Lefèvre, D. Trystram, A.-C. Orgerie, and B. Fichel,
“An experimental comparison of software-based power meters: focus on
CPU and GPU,” Bangalore, India, p. 13, May 2023. [Online]. Available:
https://inria.hal.science/hal-04030223

[29] X. Jiang, Y. Pan, M. Ma, and P. Wang, “Look deep into the microservice system
anomaly through very sparse logs,” New York, NY, USA, p. 2970–2978, 2023.
[Online]. Available: https://doi.org/10.1145/3543507.3583338

[30] E. Capra, C. Francalanci, and S. A. Slaughter, “Measuring application software
energy efficiency,” IT Professional, vol. 14, no. 2, pp. 54–61, 2012.

[31] L. Aversano, T. Bodhuin, G. Canfora, andM. Tortorella,A framework for measuring
business processes based on GQM. Big Island, HI, USA: IEEE, 2004.

[32] H. Wang and H. Zheng, True Positive Rate. New York, NY: Springer New York,
2013, pp. 2302–2303. [Online]. Available: https://doi.org/10.1007/978-1-4419-
9863-7_255

[33] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén, Experi-
mentation in Software Engineering - An Introduction. Berlin, Germany: Kluwer
Academic Publishers, 2012.

[34] Y. Li, Y. Lu, J. Wang, Q. Qi, J. Wang, Y. Wang, and J. Liao, “Tadl: Fault local-
ization with transformer-based anomaly detection for dynamic microservice
systems,” in 2023 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2023, pp. 718–722.

[35] L. Wu, J. Bogatinovski, S. Nedelkoski, J. Tordsson, and O. Kao, “Performance diag-
nosis in cloud microservices using deep learning,” in Service-Oriented Computing
– ICSOC 2020 Workshops, H. Hacid, F. Outay, H.-y. Paik, A. Alloum, M. Petrocchi,
M. R. Bouadjenek, A. Beheshti, X. Liu, and A. Maaradji, Eds. Cham: Springer
International Publishing, 2021, pp. 85–96.

[36] L. Yang, J. Li, K. Shi, S. Yang, Q. Yang, and J. Sun, “Micromilts: Fault location
for microservices based mutual information and lstm autoencoder,” in 2022 23rd
Asia-Pacific Network Operations and Management Symposium (APNOMS), 2022,
pp. 1–6.

[37] J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint performance issues with
causal graphs in micro-service environments,” in Service-Oriented Computing,
C. Pahl, M. Vukovic, J. Yin, and Q. Yu, Eds. Cham: Springer International
Publishing, 2018, pp. 3–20.

[38] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng, J. Chen, Z. Wang, and H. Qiao, “Unsupervised anomaly detection
via variational auto-encoder for seasonal kpis in web applications,” Republic
and Canton of Geneva, CHE, p. 187–196, 2018. [Online]. Available: https:
//doi.org/10.1145/3178876.3185996

[39] R. Xin, P. Chen, and Z. Zhao, “Causalrca: Causal inference based precise fine-
grained root cause localization for microservice applications,” J. Syst. Softw., vol.
203, no. C, jul 2023. [Online]. Available: https://doi.org/10.1016/j.jss.2023.111724

[40] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in software engineering. Springer Science & Business Media,
2012.

[41] T. D. Cook and D. T. Campbell, Quasi-experimentation: Design & Analysis
Issues for Field Settings. Wadsworth Publishing Company, 1979.

[42] D. Huye, Y. Shkuro, and R. R. Sambasivan, “Lifting the veil on {Meta’s} microser-
vice architecture: Analyses of topology and request workflows,” in 2023 USENIX
Annual Technical Conference (USENIX ATC 23), 2023, pp. 419–432.

[43] R. B. William Voorsluys, James Broberg, Introduction to Cloud Computing. John
Wiley & Sons, 2011.

[44] M. Jay, V. Ostapenco, L. Lefèvre, D. Trystram, A.-C. Orgerie, and B. Fichel, “An
experimental comparison of software-based power meters: focus on cpu and
gpu,” in CCGrid 2023-23rd IEEE/ACM international symposium on cluster, cloud
and internet computing. IEEE, 2023, pp. 1–13.

[45] V. Hautamaki, I. Karkkainen, and P. Franti, “Outlier detection using k-nearest
neighbour graph,” in Proceedings of the 17th International Conference on Pattern
Recognition, 2004. ICPR 2004., vol. 3, 2004, pp. 430–433 Vol.3.

[46] M.-Y. Su, “Real-time anomaly detection systems for denial-of-service attacks
by weighted k-nearest-neighbor classifiers,” Expert Systems with Applications,
vol. 38, no. 4, pp. 3492–3498, 2011. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0957417410009450

[47] Z. Cheng, C. Zou, and J. Dong, “Outlier detection using isolation forest
and local outlier factor,” in Proceedings of the Conference on Research in
Adaptive and Convergent Systems, ser. RACS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 161–168. [Online]. Available:
https://doi.org/10.1145/3338840.3355641

[48] Z. Ding and M. Fei, “An anomaly detection approach based on isolation
forest algorithm for streaming data using sliding window,” IFAC Proceedings
Volumes, vol. 46, no. 20, pp. 12–17, 2013, 3rd IFAC Conference on

Intelligent Control and Automation Science ICONS 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1474667016314999

[49] C. Li, L. Guo, H. Gao, and Y. Li, “Similarity-measured isolation forest: Anomaly
detection method for machine monitoring data,” IEEE Transactions on Instrumen-
tation and Measurement, vol. 70, pp. 1–12, 2021.

23

https://inria.hal.science/hal-00912996
https://inria.hal.science/hal-04030223
https://doi.org/10.1145/3543507.3583338
https://doi.org/10.1007/978-1-4419-9863-7_255
https://doi.org/10.1007/978-1-4419-9863-7_255
https://doi.org/10.1145/3178876.3185996
https://doi.org/10.1145/3178876.3185996
https://doi.org/10.1016/j.jss.2023.111724
https://www.sciencedirect.com/science/article/pii/S0957417410009450
https://www.sciencedirect.com/science/article/pii/S0957417410009450
https://doi.org/10.1145/3338840.3355641
https://www.sciencedirect.com/science/article/pii/S1474667016314999

	Abstract
	1 Introduction
	2 Background
	2.1 Microservice Architecture
	2.2 Containerisation
	2.3 Anomaly Detection & Root Cause Analysis
	2.4 Measuring energy consumption

	3 Related Work
	4 Experiment Definition
	5 Experiment Planning
	5.1 Subjects Selection
	5.2 Experimental Variables
	5.3 Experiment Design

	6 Experiment Execution
	6.1 Preparation
	6.2 Setup
	6.3 Execution and Measurement
	6.4 Pipeline
	6.5 Anomaly Detection Models

	7 Results
	7.1 Data Exploration

	8 Discussion
	9 Threats To Validity
	9.1 Internal Validity
	9.2 External Validity
	9.3 Construct Validity

	10 Conclusion
	References

